

Course Specification — (Postgraduate)

Course Title: Generalized Functions

Course Code: 202654-3

Program: Master of pure Mathematics

Department: Mathematics and Statistics Department

College: Faculty of Sciences

Institution: Taif University

Version: 1

Last Revision Date: 20/05/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	5
D. Students Assessment Activities:	6
E. Learning Resources and Facilities:	6
F. Assessment of Course Quality:	7
G. Specification Approval Data:	7

A. General information about the course:

1. Course Identification:

1. Credit hours: (3) h 2. Course type A. □University □College ⊠ Department □ Track □Others B. □ Required □ Elective 3. Level/year at which this course is offered: Level 3 / 3th year 4. Course general Description:

This course covers: Extension local functions problem–Functions of one variable test – Generalized Functions of one variable – Examples on Generalized Functions – Ordinary differential equations – the divided of Unit – Convergence in generalized functions spaces – Curvature of generalized functions - Torsion of generalized functions - Fourier transformations of generalized functions.

5. Pre-requirements for this course (if any):

None

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

The student will be taught as follows:

- 1. Study the concept extension local functions problem.
- 2. Study the functions of one variable test.
- 3. Study generalized Functions of one variable.
- 4. Study examples on generalized Functions.
- 5. Study ordinary differential equations.
- 6. Study the divided of Unit.
- 7. Study convergence in generalized functions spaces.
- 8. Study curvature of generalized functions.
- 9. Study torsion of generalized functions.
- **10. Study Fourier transformations of generalized functions.**

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	\checkmark	100%
2	E-learning		

No	Mode of Instruction	Contact Hours	Percentage
	Hybrid		
3	Traditional classroom		
	• E-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	NA
3.	Field	NA
4.	Tutorial	NA
5.	Others (specify)	NA
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and underst	anding		
1.1	Define fundamentals of extension local functions problem.	K1	Lectures, group discussion	Exams, Quizzes, Assignments
1.2	Classify problems related to the basic concepts of generalized Functions.	К3	Lectures, group discussion	Exams, Quizzes, Assignments
2.0	Skills			
2.1	Applyappropriatemathematicaltheories,andtoolsinprovingvariousTheoremsofcurvatureofgeneralizedfunctions.	S1	Lectures, group discussion	Exams, Quizzes, Assignments, report

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.2	Use important mathematical concepts, principles, theorems, formulas, computational techniques in the concept of torsion of generalized functions and Fourier transformations of generalized functions.	\$5	Lectures, group discussion	Exams, Quizzes, Assignments, report
3.0	Values, autonomy, and	responsibility		
3.1	Work effectively within groups and independently.	V1	Collaborative Learning Self-learning	Scientific activity
3.2	Articulate responsibility for learning importance and continuing personal and professional development.	V2	Lectures	Assignments

C. Course Content:

No	List of Topics	Contact Hours
1.	Definitions of extension local functions problem.	3
2.	Functions of one variable test	3
3.	Generalized Functions of one variable. Definition and examples	3
4.	Generalized Functions of one variable. Operations and properties	3
5.	Convergence in generalized functions spaces.	3
6.	Differentiation of generalized functions	3
7.	Hadamard's finite part and some pseudofunctions generated by it	3
8.	Distributional derivatives of some pseudofunctions	3
9.	Ordinary differential equations. First and Second order and fundament solutions	3
10.	Divided of Unit.	3
11.	Midterm exam	3

15	15 Fourier transformations of generalized functions. 3 Total 45	
15		2
14.	Fourier transformations of generalized functions.	3
13.	Torsion of generalized functions.	3
12	Curvature of generalized functions.	3

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes and homeworks	Continuous Evaluation	10 %
2.	Midterm Exam	10-11	20 %
3.	Final Exam	15-16	70%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	1.Distribution Theory and Transform analysis by A. H. Zemanian2. Generalized Functions, Volume 1: properties and operations, Edited by I. M. Gel'fand, G. E. Shilov
Supportive References	Generalized Functions: Theory and Applications 3rd Edition , by Ram P. Kanwal.
Electronic Materials	Lectures available in Blackboard
Other Learning Materials	

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms
Technology equipment (projector, smart board, software)	Data show, Blackboard

Items	Resources
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Program Leader	Direct& Indirect
Effectiveness of students' assessment	Faculty, Program Leader	Direct
Quality of learning resources	Students, Faculty	Indirect
The extent to which CLOs have been achieved	Faculty	Direct& Indirect

Other

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Department Council
REFERENCE NO.	
DATE	October 2023

