

Course Specifications

Course Title:	Mathematical Modelling
Course Code:	2024202-3
Program:	Bachelor in Mathematics.
Department:	Mathematics and Statistics Department
College:	Faculty of Sciences
Institution:	Taif University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation	
H. Specification Approval Data7	
Mathematical	

A. Course Identification

1. Credit hours: Three Hours			
2. Course type			
a. University College Department $$ Others			
b. Required $$ Elective			
3. Level/year at which this course is offered: 11^{th} level / 4^{th} year			
4. Pre-requisites for this course (if any): Linear algebra (2022204-3) & Ordinary Differential Equations (2022201-4)			
5. Co-requisites for this course (if any):			
None			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	4Hr /Week	100
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	40
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	40

B. Course Objectives and Learning Outcomes

1. Course Description

This course introduces mathematical modelling: Study modelling change with difference equations, approximating change with difference equations, dynamical systems, systems of difference equations, difference operators. Study mathematical models, proportionality, geometric similarity, graphical fitting, analytic fitting, least squares fitting, choosing models, polynomial models, smoothing, cubic splines. Simulation modelling, modelling using graph theory, modelling with differential equation (Population growth, Drug dosage, graphical solutions, numerical approximations, separation of variables, linear equations), some additional applications of mathematics modeling: biological applications, social, chemistry and behavioral sciences applications, physics and engineering applications.

2. Course Main Objective

The students will be taught as follows:

- 1. Introducing basic notations and concepts about mathematical modelling.
- 2. Analyzing modeling using geometric similarity, difference equations, differential equations, model fitting and simulation modeling.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding:	
1.1	Recognize the meaning of mathematical model with difference and differential equations.	K2
1.2	Describe modeling, dynamical systems, modelling using geometric similarity, model fitting and simulation modelling.	K2
2	Skills:	
2.1	Use the model through analytical, graphical solutions or statistical analysis.	S1
2.2	Explain standard modelling procedures, which involve observations of a natural system and the development of a numeric or analytical model.	S1
2.3	Apply mathematical descriptions of some real systems	S1
3	Values:	-
3.1	Work effectively within groups and independently.	V1
3.2	Articulate ethical behaviour associated with institutional Guidelines in classroom, and in Lab.	V3
С. (Course Content	

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to mathematical modelling & Modelling change with difference equations, Approximating Change with Difference Equations.	4
2	Dynamical systems, Systems of difference equations, Difference operators & Mathematical models, Proportionality.	4
3	Geometric similarity, Graphical fitting & Analytic fitting, least squares fitting.	4
4	Choosing models & Polynomial models & Smoothing.	4
5	Cubic splines.	4
6	Midterm exam, Simulation Modelling	4
7	Modelling using Graph Theory.	4
8	Modeling with a Differential Equation Population growth, Drug dosage.	4
9	Graphical solutions, Numerical approximations & Separation of variables & Linear equations	4
10	Some additional applications of Mathematics modeling: Biological applications, Chemical Reaction applications, Social and Behavioral Sciences applications, Physics and Engineering applications.	4
	Total	40

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and **Assessment Methods**

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding:			
1.1	Recognize the meaning of mathematical model with difference and differential equations.	LecturesGroup discussions	• Quizzes Assignments	
1.2	Describe modelling, dynamical systems, modelling using geometric similarity, model fitting and simulation modelling.	LecturesGroup discussions	ExamsAssignments	
2.0	Skills			
2.1	Use the model through analytical, graphical solutions or statistical analysis.	• Interactive classes Group discussions	• Quizzes Assignments	
2.2	Explain standard modelling procedures, which involve observations of a natural system and the development of a numeric or analytical model.	LecturesGroup discussions	ExamsQuizzes	
2.3	Apply mathematical descriptions of some real systems.	• Lectures Self-learning through the website	ExamsQuizzesAssignments	
3.0	Values			
3.1	Work effectively within groups and independently.	Interactive classes. Give students tasks of duties.	Assessment of design projects that have elements of interpersonal skills.	
3.2	Articulate ethical behaviour associated with institutional Guidelines in classroom, and in Lab.	LecturesGroup discussions	ExamsQuizzes	
2. Assessment Tasks for Students				

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Quizzes + Home works	Continues	10 %
2	Midterm exam	5 th -6 th	30 %
3	Class Work (Homework- report- class test)	8 th	10 %
4	Final exam	11 th	50 %

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

6 hours per week (as defined in the teaching schedule of the faculty member) for academic advice and consultations.

Teaching staff is also available using Blackboard web site and Taif University "Edugate" System.

F. Learning Resources and Facilities

1.Learning Resources		
Required Textbooks	S. Banerjee, Mathematical Modelling (Models, Analysis and Applications), 2015	
Essential References Materials	Bradshow, Noel-Ann, A first course in mathematical modeling, 2012. ISBN 0-53-403367-9	
Electronic Materials	 ISBN 0-55-405507-9 Journal of Differential Equations (http://www.journals.elsevier.com/journal-of-differential- equations) Applied Mathematical Modeling (https://www.journals.elsevier.com/applied-mathematical- modelling) International Journal of Mathematical Modelling and Numerical Optimization (http://www.inderscience.com/jhome.php?jcode=ijmmno) Mathematical Modelling and Analysis (http://www.tandfonline.com/toc/tmma20/current) Finkelstein, L and Carson E.R. (1985), Mathematical Modelling of Dynamic Biology. Edward A. Bender-An Introduction to Mathematical Modelling- John Wiley & Sons Inc (1978). Shum book series in Partial Differential Equations. 	
Other Learning Materials		

1.Learning Resources

2. Facilities Required

5-Snum book series in Partial Differential Equations.				
2. Facilities Required				
Item	Resources			
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Lecture halls, containing white boards, and electronic monitors - The seats fit the number of students - Laboratories equipped with suitable numbers of computers			
Technology Resources (AV, data show, Smart Board, software, etc.)	Laptop and projector.			
Other Resources (Specify, e.g., if specific laboratory equipment is required, list requirements or attach a list)	Wi-Fi internet connections			

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment	Students	Indirect
Quality of learning resources	Peer Reviewer	Direct
	Students	Indirect
Extent of achieving the course learning outcomes	Peer Reviewer	Direct
	Students	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Department of Mathematics and Statistics	
Reference No.	11	
Date	12-7-1443 Н)

Course Specifications