

Course Specifications

Course Title:	Classical Mechanics (2)	
Course Code:	2033103-2	
Program:	Bachelor in Physics	
Department:	Department of Physics	
College:	College of Science	
Institution:	Taif University	

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities5	
1.Learning Resources	5
2. Facilities Required	6
G. Course Quality Evaluation	
H. Specification Approval Data6	

A. Course Identification

1. Credit hours:2
2. Course type
a. University College Department $$ Others
b. Required $$ Elective
3. Level/year at which this course is offered: 7^{th} Level / 3^{nd} Year
4. Pre-requisites for this course (if any): Classical Mechanics 1 / 2032202-3
5. Co-requisites for this course (if any):None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3	100%
2	Blended	0	0%
3	E-learning	0	0%
4	Distance learning	0	0%
5	Other	0	0%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	0
3	Tutorial	0
4	Others (specify)	0
	Total	30

B. Course Objectives and Learning Outcomes

1. Course Description

This course covers important parts in advanced classical mechanics. Students will study two and many Bodies Problem. Lagrange's Equations and their applications will be studied. Finally, Hamiltonian's Equations and their applications are also included.

2. Course Main Objective

Manipulate the physical quantities and the laws of classical mechanics for a discrete or continuous system of material point in the reference frame of the mass center. Apply the laws of conservation to a two material points system. Extend the idea of coordinates system to the generalized coordinates. Construct the Lagrangian and Hamiltonian for simple mechanical systems, rigid bodies and coupled oscillations, as well as, apply the Lagrange and Hamilton equations to determine its motion's differential equations.

3. Course Learning Outcomes

	CLOs		
1	Knowledge and Understanding		
1.1	Define the different physical quantities and write clearly mechanics laws and the expression of Hamiltonian and Lagrangian describing the system motion.	К2	
1.2	1.2Distinguish between coordinates and generalized coordinates.K2		
2	Skills :		
2.1	Apply classical laws of mechanics and deduce the motion equations of some system.	S1	
2.2	2.2 Apply Lagrangian and Hamiltonian equations to some systems and S1 explain the difference by comparison with Newtonian mechanics.		
3	Values:		
3.1	Show responsibility for working independently and for continuous improvement of personal capacities.	V1	

C. Course Content

No	To List of Topics		
1	 <u>Unit 1: Two and many Bodies Problem (method and applications):</u> Motion of a system of two bodies Center of Mass for Particles Kinetic energyof many particle systems in Laboratory & Centercoordinates Linear momentum of many particle systems in Laboratory & Centercoordinates Angular momentum of many particle systems in Laboratory & Centercoordinates Collisions of many particle systems in Laboratory & Centercoordinates 	11	
2	Unit 2: Lagrange's Equations: • Motion of many particle systems • Constrained systems & free systems First Periodic Exam • Constrained equations		
3	Unit 3: Hamiltonian's Equations: 1 • Generalized momenta and cyclic coordinates 1 Second Periodic Exam 1 3 • conservative laws • Hamiltonian equations of motion 6 • Electromagnetic forces and velocity dependent potential 6		
4	Revision Total	2 30	

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding			
1.1	Define the different physical quantities and write clearly mechanics laws and the expression of Hamiltonian and Lagrangian describing the system motion.	Lecture Discussion	Written exam	
1.2	Distinguish between coordinates and generalized coordinates.	Lecture Discussion	Written exam	
2.0	Skills			
2.1	Apply laws of motion and Newton, and deduce the motion equation of some system.	Problem solving	Written exam Activities	
2.2	Solve the motion of mechanical system by using mechanic laws and the formalism of Hamilton and Lagrange.	Problem solving	Written exam Activities	
3.0	Values			
3.1	Show responsibility for working independently and for continuous improvement of personal capacities.	Groups discussion	Homework	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Activities	Periodically	10%
2	Midterm exam	6^{th}	30%
3	Short exam	9^{th}	10%
4	Final exam	12 th	50%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Each faculty member is assigned a group of students for continuous academic advice during six office hours weekly (6 hrs./week).
- Teaching staff are available for individual student consultations during office hours

F. Learning Resources and Facilities 1.Learning Resources

Required Textbooks	 Classical Mechanics by Tom Kibble and Frank Berkshire, Fifth Edition, Imperial College Press, 2004. H. Goldstein, Classical Mechanics, AdisonWeley Pub. Company (1981). 	
Essential References Materials	Introduction to Classical Mechanics: With Problems and Solutions by David Morin. Cambridge University Press; 1st edition (2008).	

Electronic Materials		https://sites.google.com/site/aljalaliscientificsite/home/2 http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html wikipedia.org/wiki/ physics subjects
Other Learning Materials	•	CD associated with the text books (when available). Lecture notes and Power Points presentations prepared by the
wraterials		lecturer.

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classrooms
Technology Resources (AV, data show, Smart Board, software, etc.)	Data showLaptopSmart board
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	• None

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Student Feedback on Effectiveness of Teaching	• Students	• Indirect
Evaluation of Teaching	InstructorProgram coordinatorDepartmental council	• Indirect
Improvement of Teaching	 Program leaders Relevant committee	• Direct
Quality of learning resources	StudentsInstructor Faculty	• Indirect
Extent of achievement of course learning outcomes,	 Program leaders Instructor	• Direct
Course effectiveness and planning for improvement	 Program leaders Instructor	• Indirect
planning for improvement	0	• Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality oflearning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods(Direct, Indirect)

H. Specification Approval Data

Council / Committee	Department Council
Reference No.	
Date	October 2, 2022