

Course Specifications

Course Title:	Modern physics
Course Code:	2033105-4
Program:	Bachelor in Physics
Department:	Physics Department
College:	College of Science
Institution:	Taif University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 4
2. Course type
a. University College Department 🗸 Others
b. Required v Elective
3. Level/year at which this course is offered: 7 th Level / 3 rd Year
4. Pre-requisites for this course (if any): None
5. Co-requisites for this course (if any): None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	7	100%
2	Blended	0	0%
3	E-learning	0	0%
4	Distance learning	0	0%
5	Other	0	0%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	50
2	Laboratory/Studio	20
3	Tutorial	0
4	Others (specify)	0
	Total	70

B. Course Objectives and Learning Outcomes

1. Course Description

This course presents the student with an important introduction to the concepts of modern physics that arose at the beginning of the twentieth century, starting with the special theory of relativity, the particle aspects of electromagnetic radiation, the wave aspects of material particles and ending with the modern atomic concept.

2. Course Main Objective

- Special theory of relativity
- Particle aspects of electromagnetic radiation
- Wave aspects of material particles
- Atomic structure

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	State the differences between Galileo relativity and Einstein's special relativity.	K2
1.2	Describe the particle aspects of electromagnetic radiation and the wave aspect of material particles, in addition recall the probabilistic interpretation of De Broglie waves.	K2
2	Skills :	
2.1	Explain physical principles and concepts relevant to the course and their applications.	S4
2.2	Develop physics problems solving skills.	S2
3	Values:	
3.1	Work effectively in groups even when performing experiments.	V2
3.2	Act responsibly and be able to prepare a written scientific report.	V3

C. Course Content

No	List of Topics	Contact Hours
Part	1	
	<u>Unit1:</u> Special theory of relativity	
	Galileo relativity	
	Michelson and Morley experiment	
	Einstein's relativity postulates	
1	• Time dilatation	13
	• Length contraction	
	• Twins paradox	
	• Energy and momentum transformation in four dimensional space	
	Mass and energy Unit2: Particle aspects of electromagnetic radiation	
	 Black body radiation 	
2	 Photoelectric effect 	12
2	Compton effect	
	•	
	Pair production and Annihilation Unit3: Wave aspects of material particles	
	• De Broglie – matter- waves	
3	Davisson and Germer experiment	12
	Electron diffraction	
	Heisenberg uncertainty principle	

	Correspondence principle	
	• Probabilistic interpretation of De Broglie waves	
	Unit4: Atomic structure	
	• Introduction, planetary model	
	• Electron orbits	
4	• Atomic spectra	13
	Bohr's model for Hydrogen atom	10
	• Energy levels and spectra	
	Nuclear motion	
	Atomic excitation	
Par	t2	
1	Experiment 1: Determination of the Specific charge of the electron" e/m" 2	
2	Experiment 2: Study the Photoelectric effect & determination of Planks 2	
3	Experiment 3: Diffraction of electrons in a polycrystalline lattice (Debye- Scherrer diffraction) 2	
4	Experiment 4: Determining the wavelengths H α , H β and H γ from the Balmer series of hydrogen 2	
5	Experiment 5: <i>Bragg reflection</i> : diffraction of x-rays at a monocrystal on NaCl crystal	
6	Experiment 6: Study the Frank – Hertz curve on Mercury 2	
7	Experiment 7: Observing the normal <i>Zeeman</i> effect in transverse and longitudinal configuration 2	
8	Experiment 8: Electron spin resonance at DPPH Determining the magnetic field as a function of the resonance frequency 2	
9	Experiment 9: Nuclear magnetic resonance in polystyrene, glycerine and teflon	
10	Experiment 10: Study of Millikan experiment for oil drop	2
	Total	70

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	State the differences between Galileo relativity and Einstein's special relativity.		Written exam and Homework reports
1.2	Describe the particle aspects of electromagnetic radiation and the wave aspect of material particles, in addition recall the probabilistic interpretation of De Broglie waves.	-	Written exam and Quizzes
2.0	Skills		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.1	Explain physical principles and concepts relevant to the course and their applications.	Lectures	Written exam and activities
2.2	Develop physics problems solving skills.	Problem solving	Written exam and homework reports
3.0	Values		
3.1	Work effectively in groups even when performing experiments.	Group discussion	Lab reports Project
3.2	Act responsibly and be able to prepare a written scientific report.	Group discussion	Homework reports and lab reports

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Midterm exam I	6 th	20%
2	Activities	Periodically	10%
3	Lab reports	Weekly/ 10 th	20%
4	Final Lab Exam	10 th	10%
5	Final exam	12 th	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Each faculty member is assigned a group of students for continuous academic advice during six office hours weekly (6 hrs./week).
- Teaching staff are available for individual student consultations during office hours.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	* Concepts of modern physics . — 6th ed . (2003), Arthur Beiser Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc.
Essential References Materials	* Modern physics, S. Kenneth, Willey, 1995
Electronic Materials	 * Web Sites on the internet that are relevant to the topics of the course & general physics websites such as : <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u> <u>http://www.hazemsakeek.info/magazine/</u> wikipedia.org/wiki/ physics subjects
Other Learning Materials	* Multi media / CD associated with the text books (when available). * Lecture notes and PowerPoint presentations prepared by the lecturer.

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classrooms Modern physics laboratory
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show Laptop Smart board
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Student Feedback on Effectiveness of Teaching	• Students	Indirect
Evaluation of Teaching	 Instructor Program coordinator Departmental council Faculty council 	Indirect
Improvement of Teaching	 Program leaders Relevant committee	Direct
Quality of learning resources	StudentsInstructorFaculty	Indirect
Extent of achievement of course learning outcomes,	 Program leaders Instructor	Direct
Course effectiveness and planning for improvement	 Program leaders Instructor 	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	October 2, 2022