

Course Specification (Postgraduate)

Course Title: Search Algorithms & Optimizations

Course Code: 501822-3

Program: Master in Artificial Intelligence

Department: Computer Science

College: Computers and Information Technology

Institution: Taif University

Version: V2

Last Revision Date: 5 May 2024

قسم علوم الحاسب

Computer Science Department TAIF UNIVERSITY

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	5
D. Students Assessment Activities:	5
E. Learning Resources and Facilities:	5
F. Assessment of Course Quality:	6
G. Specification Approval Data:	6

A. General information about the course:

□College

1. Course Identification:

1. Credit hours: (3)

2. Course type

A. University

□ Elective

B. 🛛 Required

3. Level/year at which this course is offered: (Year: 1, Level: 1)

4. Course general Description:

Heuristic optimization algorithms are artificial intelligence search methods that can be used to find the optimal decisions for designing or managing a wide range of complex systems. This course describes a variety of (meta) heuristic search methods including simulated annealing, tabu search, genetic algorithms, genetic programming, dynamically dimensioned search, and multi-objective methods. Algorithms will be used to find values of discrete and/or continuous variables that optimize system performance or improve system reliability. Students can select application projects from a range of application areas. The advantages and disadvantages of heuristic search methods for both serial and parallel computation are discussed in comparison to other optimization algorithms.

5. Pre-requirements for this course (if any):

None.

6. Co-requirements for this course (if any):

None.

7. Course Main Objective(s):

The objectives of this course are as follows:

- Identify, understand, formulate, and solve optimization problems.
- Understand the concepts of stochastic optimization algorithms.
- Analyze and adapt modern optimization algorithms.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	36	80%
2	E-learning	9	20%
3	Hybrid Traditional classroom E-learning 	0	0%
4	Distance learning	0	0%

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	-
3.	Field	-
4.	Tutorial	-
5.	Others (specify): Mid-Term and Final Exams	-
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Understand the concepts of stochastic optimization algorithms.	K1	Lecture, Brainstorming, Discussion	Direct: Quiz, Exam Indirect: Survey
1.2	Identify, understand, formulate, and solve optimization problems	K1	Lecture, Brainstorming, Discussion	Direct: Quiz, Exam Indirect: Survey
2.0	Skills			
2.1	Analyze and adapt modern optimization algorithms.	S1	Lecture, Problem Solving	Direct: Exam, Quiz, Assignment Indirect: Survey
2.2	Implement modern optimization algorithms.	S2	Lecture, Project, Problem Solving	Direct: Exam, Quiz, Assignment Indirect: Survey
2.3	Evaluate the modern optimization algorithms.	S2	Lecture, Project, Problem Solving	Direct: Exam, Quiz, Assignment Indirect: Survey
3.0	Values, autonomy, and responsibilit	У		
3.1	Function effectively as a member or leader of a team engaged in activities appropriate to the field of data mining.	V2	Discussion, Problem Solving	Direct: Project, Presentation Indirect: Survey

C. Course Content:

No	List of Topics	Contact Hours
1.	Introduction, Constraints, Satisfiability	3
2.	Hard Problems	9
3.	Local Search	6
4.	Genetic Algorithms	6
5.	Tabu Search	6
6.	Comparison of Algorithms	6
7.	Multi-Objective Optimization	6
Tota	t	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Mid-Term Exam	5 th week	25%
2.	Project Implementation	10 th week	10%
3.	Project Report	10 th week	10%
4.	Student Presentation	12 th week	5%
5.	Final Exam	15 th Week	50%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Ecceptic Deferences	 Optimization modelling: a practical approach
Essential References	 Operations research: applications and algorithms
Supportive References	 To be provided in the classroom.
Electronic Materials	 To be provided in the classroom.
	 Links provided by the instructor.
Other Learning	 Handouts and Presentations Slides prepared by the
Materials	instructor.
	 Blackboard.

2. Educational and Research Facilities and Equipment Required:

ltems	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classroom (20 students/class)Computer labs

		0	
Items			Resources
Technology equipment (Projector, smart board, software)			projector / data show board
Other equipment (Depending on the nature of the specialty)		To be announced during the course!	
F. Assessment of Cour	se Quality:		
Assessment Areas/Issues	Assessor		Assessment Methods
			Indirect (Course exit survey)

Areas/Issues	ASSESSOI	Assessment Methous
Effectiveness of teaching	Students Coordinator	Indirect (Course exit survey) Indirect (Feedback from Course Coordinator)
Effectiveness of students assessment	Faculty member Coordinator	Indirect (Feedback from Faculty member) Indirect (Feedback from Course Coordinator)
Quality of learning resources	Students Faculty member Coordinator Council Curriculum Committees	Indirect (Course exit survey) Indirect (Feedback from Faculty member) Indirect (Feedback from Course Coordinator) Indirect (Feedback from council) Indirect (Feedback from Graduate Committees)
The extent to which CLOs have been achieved	Students Faculty member Coordinator Curriculum Committees	Indirect (Course exit survey) Indirect (Feedback from Faculty member/ Course Coordinator/ Graduate Committee)
Other	-	-

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	GRADUATE PROGRAMS COMMITTEE – CS DEPT.		
REFERENCE NO.	V2		
DATE	5/5/2024	قسم علوم الحاسب	

Computer Science Department

