

Course Specifications

Course Title:	Physics (2)	
Course Code:	203207-4	
Program:	Bachelor in Computer Engineering	
Department:	Department of Physics	
College:	College of Science	
Institution:	Taif University	

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	4
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	5
H. Specification Approval Data	6

il.

A. Course Identification

1. Credit hours:4
2. Course type
a. University College $$ Department Others
b. Required $$ Elective
3. Level/year at which this course is offered: 4/2
4. Pre-requisites for this course (if any): Physics (1) (203206-4)
5. Co-requisites for this course (if any): NON

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3+1	100%
2	Blended	0	0
3	E-learning	0	0
4	Distance learning	0	0
5	Other	0	0

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	30
3	Tutorial	0
4	Others (specify)	0
	Total	75

B. Course Objectives and Learning Outcomes

1. Course Description

This course covers the following topics: magnetic fields, sources of magnetic field, The Biot-Savart Law, Ampere's Law, Gauss's Law in magnetism, Inductance, Faraday's Law of Induction, RL Circuits, mutual inductance, RLC circuit, and alternating current circuits

2. Course Main Objective

Apply knowledge of computing and mathematics appropriate to the discipline.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	Understand Formation of a solid platform of fundamental principles in	K1
	electricity and magnetism.	

	CLOs	Aligned PLOs
1.2	Understand fundamentals equations (Laws) and linking them to	K1
	corresponding phenomena	
2	Skills :	
3	Values:	
3.1	Acquire skills of the interpretation of experimental results and linking	V1
	with the application domain	

C. Course Content

No	List of Topics	Contact Hours
1	Introduction	7
2	Magnetic fields, sources of magnetic field	7
3	The Biot-Savart Law	7
4	Ampere's Law	
5	5 Gauss's Law in magnetism	
6	6 Inductance, Faraday's Law of Induction,	
7	7 RL Circuits	
8	Mutual inductance	8
9	9 RLC circuit	
10	10 alternating current circuits	
	Total	75

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Understand Formation of a solid platform of fundamental principles in electricity and magnetism.	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments
1.2	Understand fundamentals equations (Laws) and linking them to corresponding phenomena	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments
2.0	Skills		
3.0	Values		
3.1	Acquire skills of the interpretation of experimental results and linking with the application domain	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Assignments	3,5,6,9,10	10%
2	Midterm Exam	7	20%
3	Lab Exam	15	20%
4	Final Exam	16	50%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Academic advising and counseling of students is an important component of teaching; student academic advising is a mandatory requirement of College of Computers and Information Technology (CCIT). Appropriate student advising provides support needed for the student during times of difficulty. In addition, it helps the student to build a close relationship with his/her advisor and to provide student motivation and involvement with the institution.

In addition, since faculty are usually the first to recognize that a student is having difficulty, faculty members play a key role in developing solutions for the students or referring them to appropriate services. Faculty members also participate in the formal student-mentoring program.

Additional counseling is provided by course directors, who provide students with academic reinforcement and assistance and refer "at risk" students to the Vice Dean for Academic Affairs and the Vice Dean for female section.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Instructors Notes
Essential References Materials	NON
Electronic Materials	NON
Other Learning Materials	NON

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 A Lecture room appropriate for maximum 25 students with a personal computer, a data show and a smart board. A Lab room appropriate for maximum 15 students with a personal computer, a data show and a smart board.
Technology Resources (AV, data show, Smart Board, software, etc.)	• Lab materials and required software
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching	Students	Students surveys and Students course evaluation
Improvement of Teaching	Course Coordinator	deficiencies based on the student Evaluation, faculty input, course file, and program assessment
Verifying Standards of Student Achievement	Curriculum Committee	 Review CAF (Course assessment file) Alumni surveys. Periodic exchange and remarking of tests or a sample of assignments with staff at another

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	

قسم هندسة الحاسب

Computer Engineering Department

