

Course Specification (Bachelor)

Course Title: Microprocessors & Assembly Language Programming

Course Code: 501326-3

Program: Bachelor of Computer Science

Department: Department of Computer Science

College: College of Computers and Information Technology

Institution: Taif University

Version: 1

Last Revision Date: 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Credit hours: (3)

2. Course type

Α.	🗆 University	□ College	🛛 Department	🗆 Track	□ Others
В.	🛛 Required		🗆 Elect	ive	

3. Level/year at which this course is offered: (5^{TH})

4. Course general Description:

Microprocessor architecture and systems. Assembly language programming of microprocessors, data representation, addressing and instruction sets, I/O programming, interrupts, assembly process, cross assemblers and debugging.

5. Pre-requirements for this course (if any):

503220-3 Digital Logic Design

6. Co-requirements for this course (if any):

7. Course Main Objective(s):

- To introduce the basic concepts of microprocessor architecture.
- To learn assembly language programming skills.
- To provide extensive knowledge of microprocessor-based systems and interfacing.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3	100%
2	E-learning	-	-
3	HybridTraditional classroomE-learning	-	-
4	Distance learning	-	-

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	-
4.	Tutorial	-
5.	Others (specify)	-
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Know	ledge and und	erstanding	
1.1	Understand the basic architecture of a current 16bit microprocessor with hands on experience.	K1	Lectures	Direct Quizzes/ Homework Exams Indirect Course Exit Survey
1.2	Understand Memory Addressing Segment and Offset Addressing Data Addressing Modes Program Memory Addressing Modes and Stack Memory Addressing Modes.	K1	Lectures Labs	Direct Quizzes/ Homework Exams Indirect Course Exit Survey
1.3	Understand the correspondence between instruction execution and the timing signals on the microprocessor external buses and pins	К1	Lectures Labs	Direct Quizzes/ Homework Exams Indirect Course Exit Survey
2.0		Skills		

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.1	Use assembly language for programming of the target microprocessor.	S1	Lectures Labs	Direct Quizzes/ Homework Exams Indirect Course Exit Survey
2.2	Apply the interrupt structures and microprocessor interfacing to memory and simple I/O subsystems.	S1	Lectures Labs	Direct Quizzes/ Homework Exams Indirect Course Exit Survey
3.0	Values, a	utonomy, and	responsibility	
3.1				
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to the microprocessors and microcomputer-based systems; families, types, and characteristics.	3
2.	The microprocessor and its architecture Internal Architecture, Real mode memory addressing.	3
3.	Addressing modes Data addressing modes, program memory addressing modes, stack memory addressing modes.	6
4.	Data movement instructions MOV, PUSH/POP, Load Effective Address. Data movement instructions String Data Transfers, Misc. Data Transfers Instructions, Assembler details	6
5.	Arithmetic and logic instructions Addition, subtraction and comparison, multiplication and division, BCD and ASCII arithmetic, basic logic instruction, shift and rotate instructions, string comparison.	3
6.	Program control instructions, the Jump group, controlling the flow of assembly language program, procedures.	3
7.	Introduction to interrupts, interrupt processing, hardware and software interrupts, programmable interrupt Controller.	3
8.	Using assembly language with C/C++ for 16bit applications, Separate assembly objects.	3
	Total	30

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HomeWorks /Student Participation-Attendance	Every Week	10%
2.	Quizzes	Week 4 and 12	10%
3.	Mid-Term	Week 7	20%
4.	Lab Score	Week 16	20%
5.	Final Examination	Week 16	40%

D. Students Assessment Activities

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	• "The Intel Microprocessors", Barry B. Brey, 7th Edition 2006, Prentice Hall
Supportive References	• The 80x86 IBM PC and Compatible Computers. "Assembly Language Design & Interfaces", Muhammad Ali Mazidi and Janice Gillispie Mazidi, 3 rd Edition 2002 Prentice Hall
Electronic Materials	-
Other Learning Materials	-

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Classroom with 30 chairs Computer Lab with Micro-Processor Emulator
Technology equipment (projector, smart board, software)	Video projector / data showWhite board
Other equipment (depending on the nature of the specialty)	-

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	 Students Faculty members Coordinator Council Curriculum Committees 	 Course exit survey Feedback from Faculty members Feedback from Course Coordinator Feedback from council

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of Students assessment	 Students Faculty members Coordinator Council Curriculum Committees 	 Feedback from Curriculum Committees Course exit survey Feedback from Faculty members Feedback from Course Coordinator Feedback from council Feedback from Curriculum Committees
Quality of learning resources	 Students Faculty members Coordinator Council Curriculum Committees 	 Committees Course exit survey Feedback from Faculty members Feedback from Course Coordinator Feedback from council Feedback from Curriculum Committees
The extent to which CLOs have been achieved	 Students Faculty members Coordinator Council Curriculum Committees 	 Course exit survey Feedback from Faculty members Feedback from Course Coordinator Feedback from council Feedback from Curriculum Committees

Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	CS council
REFERENCE NO.	Meeting #11
DATE	07/03/2024
