

Course Specification (Bachelor)

Course Title: Digital Logic Design

Course Code: 503221-4

Program: Bachelor in Computer Science

Department: Department of Computer Science

College: College of Computers and Information Technology

Institution: Taif University

Version: V1.2024

Last Revision Date: 01/02/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Credit hours: (4) 2. Course type A. □University □College ☑ Department □Track □Others B. ☑ Required □Elective 3. Level/year at which this course is offered: (4/2)

4. Course general Description:

This course covers many basic topics such as numbering systems, Boolean algebra, simplification using Boolean algebra and Karnaugh maps, and different logic gates. The course also deals with analysis and synthesis of combinational circuits, e.g., adders, encoders, decoders, multiplexers and demultiplexers. Flip-flops and Sequential circuits such as registers, counters, and other basic also presented. The course prepares the students to apply the above basic skills to design, implement, and test digital logic circuits in the laboratory.

5. Pre-requirements for this course (if any):

501215-3

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

This course prepares student to deal with logic circuits and give them the skills to design and implement both combinational and sequential circuits

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	5	100%
2	2 E-learning		
3	HybridTraditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	Representnumbersusingdifferentnumber systems, andtoperformbinary operations.	К1	Lecture Discussion Problem Solving Mini project	Written Exams Quizzes Assignments Practical Test
1.2	Apply the different switching algebra theorems for the minimization of logic functions.	K1	Lecture Discussion Problem Solving Mini project	Written Exams Quizzes Assignments Practical Test
1.3	Apply Karnaugh map for minimization of logic functions.	К1	Lecture Discussion Problem Solving Mini project	Written Exams Quizzes Assignments Practical Test
1.4				
•••				
20	Skille			

2.0	SKIIIS			
	Analyza and decign	S1	Lecture	Written Exams
2.1 Analyze and design different		Discussion	Quizzes	
	unerent		Problem Solving	Assignments

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	combinational circuits.		Mini project	Practical Test
2.2	Analyze and design different sequential circuits.	S1	Lecture Discussion Problem Solving Mini project	Written Exams Quizzes Assignments Practical Test
2.3				
2.4				
3.0	Values, autonomy, and	d responsibility		
3.1				
3.2				
3.3				
3.4				

C. Course Content

No	List of Topics	Contact Hours
1.	Introductory Digital Concepts	3
2.	Number systems, Binary addition, subtraction, Representation of negative numbers, 2's complement addition/subtraction, Binary codes.	3
3.	Switching algebra, Theorems, Standard representation of logic functions	8
4.	Truth table, Minimization techniques.	8
5.	Simplification of three and four variable using Karnaugh maps and Don't care.	3
6.	Combinational circuits building blocks Half and Full adders, Encoders/Decoders. Mux/Dmux/XOR circuits.	8
7.	Programmable Logic Devices. Design examples with MSI. ALU and PLD circuits	8
8.	Sequential Circuits. Bistable elements. Latches and Flip Flops. Flip Flops and Related Devices	8
9.	Theoretical design Shift registers serial and parallel	8
10.	Design examples of Shift registers serial and parallel	8
11.	Finite State machine; design analysis and synthesis.	7
12.	Counters serial and parallel, Design examples.	3
13.		

Total	75

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Lab Exam	15	15%
2.	Midterm Exam	7	20%
3.	Assignments	Continues	5%
4.	Quizzes	Continues	10%
5.	Project	Continues	10%
6.	Final Exam	16	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	M. Mano, "Digital Design", third edition, Prentice Hall, 2002.
Supportive References	T. L. Floyd, "Fundamentals of Digital Design", 6 th edition, Prentice-Hall, 2006.
Electronic Materials	
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Traditional Classrooms Laboratories
Technology equipment (projector, smart board, software)	White Board. Datashow.
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality **Assessment Areas/Issues Assessment Methods** Assessor Effectiveness of teaching Students Indirect (Surveys) Effectiveness of Students Indirect (Surveys) Students assessment Students Indirect (Surveys) Quality of learning resources The extent to which CLOs have Faculty Direct (Course Report) been achieved

Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	CS COUNCIL
REFERENCE NO.	MEETING #11
DATE	07/03/2024

