Course Specification (Bachelor) **Course Title: Computational Physics** Course Code: 2034216-2 **Program: Bachelor in Physics** **Department: Physics** College: Science **Institution: Taif University** Version: 2nd Last Revision Date: 10/10/2023 ### **Table of Contents** | A. General information about the course: | 3 | |---|---| | B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 | | C. Course Content | 5 | | D. Students Assessment Activities | 6 | | E. Learning Resources and Facilities | 6 | | F. Assessment of Course Quality | 7 | | G. Specification Approval | 7 | #### A. General information about the course: #### 1. Course Identification | 1. C | redit hours: (2) | | | | | | |--|-----------------------|---|-------------|------------------------|------------------------|---------------------| | | | | | | | | | 2. C | ourse type | | | | | | | Α. | □University | □ College | □Depa | rtment | □Track | □Others | | В. | □Required | | | ⊠ Elect | | | | 3. L | evel/year at wh | ich this course is | s offere | d: (8 th / | /4 th Year) | | | 4. C | ourse general D | escription: | | | | | | Intro | duce the need for cor | nputers in science and | the comp | utational p | hysics. | | | An o | ver view of the opera | ting systems and prog | ramming l | anguages. | | | | | | olation including Lagr
Cubic spline, Rationa | | | | near interpolation, | | The r | | tion, forward differen | ce, central | difference | and higher order der | rivatives will be | | Numerical Integration including the rectangular method, Trapezoid method, Simpson method will be studied. | | | | | | | | The solution of nonlinear equations: Bisection method, Newton's method, method of secants, Brute force method. | | | | | | | | Differential equations: Euler method, Numerical errors and instabilities, Runge-Kutta method. | | | | | | | | Monte-Carlo methods: Random number generators, Distribution functions, Acceptance and rejection method, Inversion method | | | | | | | | 5. Pre-requirements for this course (if any): | | | | | | | | Non | ie | | | | | | | 6. C | o-requisites for | this course (if any |): | | | | | Non | ie | | | | | | | 7. C | ourse Main Obj | ective(s): | | | | | The understanding of fundamental principles of physics and of how it can be used to explain and predict physical phenomena. Full knowledge of mathematical techniques and the ability to use them in quantitative prediction, modeling physical phenomena and solving complex physical problems. #### 2. Teaching mode (mark all that apply) | No | Mode of Instruction | Contact Hours | Percentage | |----|-----------------------|---------------|------------| | 1 | Traditional classroom | 30 | 100% | | No | Mode of Instruction | Contact Hours | Percentage | |----|---|---------------|------------| | 2 | E-learning | - | - | | 3 | HybridTraditional classroomE-learning | | | | 4 | Distance learning | | | #### 3. Contact Hours (based on the academic semester) | No | Activity | Contact Hours | |-------|-------------------|---------------| | 1. | Lectures | 30 | | 2. | Laboratory/Studio | 2 | | 3. | Field | - | | 4. | Tutorial | - | | 5. | Others (specify) | - | | Total | | 45 | # B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | • | Code | Course Learning
Outcomes | Code of CLOs aligned with program | Teaching
Strategies | Assessment
Methods | |---|------|---|-----------------------------------|------------------------|-------------------------------| | | 1.0 | Knowledge and under | standing | | | | | 1.1 | Define the basic concepts and theories of computational physics using advanced mathematical theories. | K1 | Lecture
Discussion | Written exam | | | 1.2 | Recognize the mathematical techniques for modeling physical phenomena. | K5 | Hands on sessions | Homework and
Written exam. | | | 2.0 | Skills | | | | | | 2.1 | Apply the scientific programming for processing and analyzing the physical data. | S3 | Problem solving | Written exam
Activities | | | 2.2 | Develop a computational physics tools that can be used | S4 | Problem solving | Written exam
Activities | | Code | Course Learning
Outcomes | Code of CLOs aligned with program | Teaching
Strategies | Assessment
Methods | |------|--|-----------------------------------|--|-----------------------| | | in the different physics fields. | | | | | 3.0 | Values, autonomy, and | d responsibility | | | | 3.1 | Work effectively and responsibly even in teamwork in performing activities and experiments in computational physics. | V1 | Encourage students to form groups to achieve specific goals. | Homework
Projects | #### **C. Course Content** | No | List of Topics | Contact Hours | |----|---|---------------| | 1 | Unit 1: Introduction The need for computers in science. What is computational physics? Operating systems and programming languages. | 4 | | 2 | Unit 2: Interpolation Lagrange interpolation Neville's algorithm Linear interpolation Polynomial interpolation Cubic spline Rational function interpolation | 4 | | 3 | Unit 3: Numerical Differentiation Forward difference Central difference and higher order methods Higher order derivatives | 4 | | 4 | Unit 4: Numerical Integration Rectangular method Trapezoid method Simpson method | 4 | | 5 | Unit 5: Solution of nonlinear equations Bisection method Newton's method Method of secants Brute force method | 4 | | 6 | Unit 6: Differential equations Euler method Numerical errors and instabilities Runge-Kutta method | 4 | | 7 | <u>Unit 7:</u> Monte-Carlo methods | 4 | | | Random number generators Distribution functions Acceptance and rejection method Inversion method | | |---|---|----| | 8 | Revision | 2 | | | Total | 30 | #### **D. Students Assessment Activities** | No | Assessment Activities * | Assessment
timing
(in week no) | Percentage of Total
Assessment Score | |----|-------------------------------|--------------------------------------|---| | 1. | Assignments | Throughout
Semester | 20 | | 2. | 1 st Periodic Exam | 7 | 15 | | 3. | 2 nd Periodic Exam | 12 | 15 | | 4. | Final Exam | 16 | 50 | ^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.). #### E. Learning Resources and Facilities #### 1. References and Learning Resources | Essential References | Paul L. DeVries, Javier E. Hasbun, A First Course in Computational Physics, 2 nd Edition, John Wiley & Sons Inc., 1994. | | |-----------------------------|--|--| | Supportive References | Nicholas J. Giordano, Hisao Nakanishi, Addison Wesley,
"Computational Physics", 2006. | | | Electronic Materials | https://homepage.univie.ac.at/franz.vesely/cp_tut/nol2h/new/ http://www.mrao.cam.ac.uk/~dfb/teaching/computationalphy | | | Other Learning
Materials | CD associated with the text books (when available). Lecture notes and PowerPoints presentations prepared by the lecturer. | | ## 2. Required Facilities and equipment | Items | Resources | |----------------------|--| | facilities | A classroom with movable tables and chairs conducive to group discussion and teamwork. | | Technology equipment | Data show, smart board | | Items | Resources | |--|-----------| | Other equipment | None | | (depending on the nature of the specialty) | | #### F. Assessment of Course Quality | Assessment Areas/Issues | Assessor | Assessment Methods | |--|--|--------------------| | Student Feedback on Effectiveness of
Teaching | Students | Indirect | | Evaluation of Teaching | Pear reviewer Program coordinator Departmental council Faculty council | Indirect | | Improvement of Teaching | Program coordinator
Relevant committee | Direct | | Quality of learning resources | Students
Instructor
Faculty | Indirect | | Extent of achievement of course learning outcomes, | Program coordinator
Instructor | Direct | | Course effectiveness and planning for improvement | Program coordinator
Instructor | Indirect | Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect) #### **G. Specification Approval** | COUNCIL /COMMITTEE | PHYSICS DEPARTMENT COUNCIL | |--------------------|----------------------------| | REFERENCE NO. | NO. 4-45 | | DATE | 27/09/2023 (12/03/1445) |