

Course Specifications

Course Title:	Computational Physics
Course Code:	2034216-2
Program:	Bachelor in Physics
Department:	Physics Department
College:	College of Science
Institution:	Taif University

Table of Contents

<u>A. Course Identification</u>	
6. Mode of Instruction (mark all that apply)	3
<u>B. Course Objectives and Learning Outcomes</u>	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
<u>C. Course Content</u>	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	4
E. Student Academic Counseling and Support	
F. Learning Resources and Facilities	
1.Learning Resources	5
2. Facilities Required	5
<u>G. Course Quality Evaluation</u>	
H. Specification Approval Data	

A. Course Identification

1. Credit hours: 2
2. Course type
a. University College 🖌 Department Others
b. Required Elective
3. Level/year at which this course is offered: 11 th Level/ 4 th Year
4. Pre-requisites for this course (if any):NONE
5. Co-requisites for this course (if any):NONE

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3	100%
2	Blended		
3	E-learning		
4	Correspondence		
5	Practical (laboratory)		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	30

B. Course Objectives and Learning Outcomes

1- Course Description

- Introduce the need for computers in science and the computational physics.
- An over view of the operating systems and programming languages.
- An overview of the interpolation including Lagrange interpolation, Neville's algorithm, linear interpolation, Polynomial interpolation, Cubic spline, Rational function interpolation.
- The numerical differentiation, forward difference, central difference and higher order derivatives will be included.
- Numerical Integration including the rectangular method, Trapezoid method, Simpson method will be studied.
- The solution of nonlinear equations: Bisection method, Newton's method, method of secants, Brute force method.
- Differential equations: Euler method, Numerical errors and instabilities, Runge-Kutta method.
- Monte-Carlo methods: Random number generators, Distribution functions, Acceptance

2. Course Main Objective

The understanding of fundamental principles of physics and of how it can be used to explain and predict physical phenomena. Full knowledge of mathematical techniques and the ability to use them in quantitative prediction, modeling physical phenomena and solving complex physical problems.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	Define the basic concepts and theories of computational physics using advanced mathematical theories.	K1
1.2	Recognize the mathematical techniques for modeling physical phenomena.	K5
2	Skills :	
2.1	Apply the scientific programming for processing and analyzing the physical data.	S3
2.2	Develop a computational physics tools that can be used in the different physics fields.	S4
3	Values:	
3.1	Work effectively and responsibly even in teamwork in performing activities and experiments in computational physics.	V1

C. Course Content

No	List of Topics	Contact Hours
1	 Unit 1: Introduction The need for computers in science. What is computational physics? 	4
2	 Operating systems and programming languages. Unit 2: Interpolation Lagrange interpolation Neville's algorithm Linear interpolation Polynomial interpolation Cubic spline Rational function interpolation 	
3	 <u>Unit 3:</u> Numerical Differentiation Forward difference Central difference and higher order methods Higher order derivatives 	4
4	 <u>Unit 4:</u> Numerical Integration Rectangular method Trapezoid method Simpson method 	4
5	Unit 5: Solution of nonlinear equations Bisection method 	4

	Newton's method	
	Method of secants	
	• Brute force method	
	Unit 6: Differential equations	
6	• Euler method	4
0	Numerical errors and instabilities	4
	Runge-Kutta method	
	Unit 7: Monte-Carlo methods	
	Random number generators	
7	Distribution functions	4
	Acceptance and rejection method	
	Inversion method	
8	Revision	2
	Total	30

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Define the basic concepts and theories of computational physics using advanced mathematical theories.	Lecture Discussion	Written exam
1.2	Recognize the mathematical techniques for modeling physical phenomena.	Hands on sessions	Homework and Written exam.
2.0	Skills:		
2.1	Apply the scientific programming for processing and analyzing the physical data.	Problem solving	Written exam Activities
2.2	Develop a computational physics tools that can be used in the different physics fields.	Problem solving	Written exam Activities
3.0	Values:		
3.1	Work effectively and responsibly even in teamwork in performing activities and experiments in computational physics.	Encourage students to form groups to achieve specific goals.	Homework Projects

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Activities	Periodically	10%
2	Midterm exam	6th	30%
3	Short exam	9th	10%
4	Final exam	12th	50%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Each faculty member is assigned a group of students for continuous academic advice during six office hours weekly (6 hrs./week).
- Also teaching staff are available for individual student consultations during office hours

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	 Nicholas J. Giordano, Hisao Nakanishi, Addison Wesley, "Computational Physics", 2006. 	
Essential References Materials	 Paul L. DeVries, Javier E. Hasbun, A First Course in Computational Physics, 2nd Edition, John Wiley & Sons Inc., 1994. 	
Electronic Materials	 <u>https://homepage.univie.ac.at/franz.vesely/cp_tut/nol2h/new/</u> <u>http://www.mrao.cam.ac.uk/~dfb/teaching/computationalphysics/</u> 	
Other Learning Materials	 CD associated with the text books (when available). Lecture notes and PowerPoints presentations prepared by the lecturer. 	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	ClassroomsComputational Physics laboratory
Technology Resources (AV, data show, Smart Board, software, etc.)	Data showLaptopSmart board
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Student Feedback on Effectiveness of Teaching	Students	Indirect
Evaluation of Teaching	Pear reviewer Program coordinator Departmental council Faculty council	Indirect
Improvement of Teaching	Program coordinator Relevant committee	Direct

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Quality of learning resources	Students Instructor Faculty	Indirect
Extent of achievement of course learning outcomes,	Program coordinator Instructor	Direct
Course effectiveness and planning for improvement	Program coordinator Instructor	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Department Council / Committee of academic development
Reference No.	
Date	October 2, 2022