

Course Specifications

Course Title:	General Physics (2)
Course Code:	2032102-4
Program:	Bachelor in Physics
Department:	Physics Department
College:	College of Science
Institution:	Taif University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation	
H. Specification Approval Data7	

A. Course Identification

1.	Credit hours: 4
2. 0	Course type
a.	University College Department X Others
b.	Required X Elective
3.	Level/year at which this course is offered: 4 th level / 2 nd year
4.	Pre-requisites for this course (if any): None
5.	Co-requisites for this course (if any):
	None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	7	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	50
2	Laboratory/Studio	20
3	Tutorial	
4	Others (specify)	
	Total	70

B. Course Objectives and Learning Outcomes

1. Course Description

This course cover important parts in Mechanics – Angular Motion and centripetal force – Mechanical properties matter – Heat – Thermal properties of matter – Vibratory motion – Sound waves

2. Course Main Objective

The concepts of classical mechanics related to projectile and circular motions and to elastic and inelastic collisions. Learn and apply the fluid statics, including the definition of fluid pressure, the description of Pascal and Archimedes principles and associated hydrostatic applications and pressure measurement designs.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Describe motions of straight trajectory on inclined planes and those of	K3
	curved trajectories such as parabolic (projectile) and circular.	
1.2	Recognize momentum and energy conservation laws to describe elastic	К 3
	and inelastic collisions, and Measure physical quantities and properties	
	with different instruments.	
2	Skills :	
2.1	Explain physical phenomena and concepts relevant to the course and	S 1
	their applications	
2.2	Develop physics problems solving skills.	S2
3	Values:	
3.1	Work efficiently within a teamwork frame to perform class and	V2
	laboratory activities.	
3.2	Act responsibly and be able to prepare a written scientific report.	V3

C. Course Content

No	List of Topics		
1	Circular trajectory motion: Angular displacement, velocity and acceleration – Equations of angular motion – centrifugal acceleration	4	
2	Parabolic trajectory motion: Projectile	3	
3	Newton's laws applications and motion on tilted planes	3	
4	The elastic property of a solid: Hook's law – Elasticity modulus	3	
5	The amount of motion and Elastic and inelastic collisions	3	
6	Three states of matter phase change diagram (solid and fluid- gas and liquid) - Pressure in fluids – Pascal principle – Archimedes principle	4	
7	Compressible fluid and non-Compressible fluid- perfect fluid and specifications	3	
8	Viscosity - effect of temperature on Viscosity	3	
9	Surface tension - the poetic property	3	
10	Flow of fluids- fluid movement –flow rate – continuity equation 4		
11	Poiseuille law –motion and kinetic energy- pressure energy - Bernoulli 6		
11	equation and applications		
12	Heat energy – Specific heat and heat capacity – Dissipated heat at constant4temperature (liquid evaporation solid melting) -applications4		
12	Vibrations and Waves: Simple harmonic motion and pendulum – Wave 4		
15	¹⁵ propagation – Waves along strings – Stationary waves.		
Sound waves in air – Sound velocity – Resonance in air tubes – Dopple		3	
17	effect.		
	Part 2 (Laboratory)		
No	D List of Topics Con Ho		
1	General introduction	2	
2	Archimedes principle	2	
3	Density of a solid 2		

4	Joule equivalent	2
5	Sound velocity	2
6	Surface tension coefficient	2
7	Viscosity coefficient	2
8	Specific heat of a solid	2
9	Young modulus	2
10	Reports evaluation and practical exam	2
	Total	70

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Describe motions of straight trajectory on inclined planes and those of curved trajectories such as parabolic (projectile) and circular.	LecturesDiscussion	• Class performance (Interacting discussion with answers to oral questions).
1.2	Recognize momentum and energy conservation laws to describe elastic and inelastic collisions. Describe the application of continuity law and Bernoulli equation to various aspects of moving fluids in life, such as flowing blood in the human body.	LecturesDiscussion	• Evaluation of homework, quizzes and reading reports.
2.0	Skills		
2.1	Explain physical phenomena and concepts relevant to the course and their applications	• Lecture	• Written Exam.
2.2	Justify how physics is essential for technology advances.	Small group work discussions	• Midterm and final exams
3.0	Values		
3.1	Work efficiently within a teamwork frame to perform class and laboratory activities.	Groups discussions	 Lab reports Projects
3.2	Act responsibly and be able to prepare a written scientific report.	Lab workGroups discussions	Lab reports

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Midterm exam I	6 th	20%
2	Activities	Periodically	10%
3	Lab reports	10 th /Weekly	20%
4	Final Lab Exam	10^{th}	10%
5	Final exam	12 th	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Each faculty member is assigned a group of students for continuous academic advice during six office hours weekly (6 hrs./week).
- Also teaching staff are available for individual student consultations during office hours.

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	"Physics for Scientists and Engineers", by Serway R. and Faughn J. Publisher: Brooks/Cole; 8th edition (2010)
Essential References Materials	Fundamentals of Physics", by Halliday, Resnick and Walker, Ninth Edition, John Wiley & Sons, Inc (2011)
Electronic Materials	Web Sites on the internet that are relevant to the topics of the course & general physics websites such as: <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u> <u>www.sciencedirect.com</u>
Other Learning Materials	Lecture notes and PowerPoints presentations prepared by the lecturer

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classrooms
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show Laptop
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Not applicable for this course

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
StudentFeedbackonEffectiveness of Teaching.	Students	Indirect
Evaluation of Teaching	-Instructor -Program coordinator -Departmental council -Faculty council	Indirect

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Improvement of Teaching	-Program leaders -Relevant committee	Direct
Quality of learning resources	StudentsInstructorFaculty	Indirect
Extent of achievement of course learning outcomes,	Program leadersInstructor	Direct
Course effectiveness and planning for improvement.	Program leadersInstructor	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Department Council / Committee of academic development
Reference No.	
Date	October 2, 2022