

Course Specifications

Course Title:	Introduction to Plasma Physics
Course Code:	2034215-2
Program:	Bachelor in Physics
Department:	Physics Department
College:	College of Science
Institution:	Taif University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 2
2. Course type
a. University College 🗸 Department Others
b. Required Elective
3. Level/year at which this course is offered: 11^{th} level / 4^{th} year
4. Pre-requisites for this course (if any): None
5. Co-requisites for this course (if any):
None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3	100%
2	Blended	0	0%
3	E-learning	0	0
4	Distance learning	0	0%
5	Other	0	0%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	0
3	Tutorial	0
4	Others (specify)	0
	Total	30

B. Course Objectives and Learning Outcomes

1. Course Description

Plasma is the fourth state of matter and it is really important in basics sciences and technology. This course is an introductory course to plasma physics in which the plasma state and the basics plasma parameters and conditions are defined. Also, the plasma models, the plasma oscillation, and waves phenomena in plasma are explained. In addition, applications of Plasma physics are illustrated.

2. Course Main Objective

- The definition of plasma state and its main behavior and characteristics.

- The definition of basic plasma parameters and conditions with some examples of plasma state in nature.

- The single particle model and the motion of the charged particle in uniform electric and magnetic field.

- The fluid plasma model, the plasma frequency, and waves in plasma.

- Applications of Plasma physics.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	Identify the basic concept of Plasma phenomena, Plasma parameters and conditions.	K1
1.2	Recognize the Plasma behavior in different fields (\mathbf{B} , \mathbf{E} and Gravitational fields)	K2
2	Skills :	
2.1	Justify how Plasma physics is essential for technology advances.	S 3
2.2	Explain the phenomena of Plasma as fluids.	S3
3	3 Values:	
3.1	Show responsibility in working independently with continuous improvement of personal capacities.	V1

C. Course Content

No	List of Topics	Contact Hours
1	 1. Introduction 1.1 Occurrence of Plasmas in Nature 1.2 Definition of Plasma 1.3 Concept of Temperature 	6
	1.4 Debye Shielding1.5 The Plasma Parameter1.6 Criteria for Plasmas	
2	2. Single-Particle Motions 2.1 Uniform E and B Fields 2.1.1 E=0 2.1.2 Finite E 2.2 Gravitational Field	4
3	 3.Plasmas as Fluids 3.1 Relation of Plasma Physics to Ordinary Electromagnetics 3.1.1 Maxwell's Equations 3.1.2 Classical Treatment of Magnetic Materials 3.1.3 Classical Treatment of Dielectrics 3.1.4 The Dielectric Constant of a Plasma 3.2 Fluid Drifts Perpendicular to B 3.3 Fluid Drifts Parallel to B 	6
4	 4.Waves in Plasmas 4.1 Representation of Waves 4.2 Group Velocity 4.3 Plasma Oscillations 4.4 Electron Plasma Waves 4.5 Sound Waves 4.6 Ion Waves 4.7 Validity of the Plasma Approximation 4.8 Comparison of Ion and Electron Waves 	6
5	 5. Diffusion and Resistivity 5.1 Diffusion and Mobility in Weakly Ionized Gases 5.1.1 Collision Parameters 	5

	5.1.2 Diffusion Parameters	
	5.2 Decay of a Plasma by Diffusion	
	5.2.1 Ambipolar Diffusion	
	5.2.2 Diffusion in a Slab	
	5.3 Steady State Solutions	
	5.3.1 Constant Ionization Function	
	5.3.2 Plane Source	
	5.3.3 Line Source	
	5.4 Recombination	
	6. Plasma Application	
	6.1 Fusion Energy	
6	6.2 Plasma acceleration	3
	6.3 Semiconductors etching	
	6.4 Plasmas in everyday life.	
	Total	30

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Identify the basic concept of Plasma phenomena, Plasma parameters and conditions.	Lecture	Written Exam
1.2	Recognize the Plasma behavior in different fields (B , E and Gravitational fields)	Lecture	Written Exam
2.0	Skills		
2.1	Justify how Plasma physics is essential for technology advances.	Project	Research report
2.2	Explain the phenomena of Plasma as fluids.	Lecture and Group discussion	Written Exam
3.0	Values		
3.1	Show responsibility for working independently and for continuous improvement of personal capacitiesGroup discussionProject		Project

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Assignments and Interaction during lectures	continuous	10%
2	Midterm exam	6th	30%
3	Short exam	9th	10%
4	Final exam	12th	50%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

4 Hours per week during office-hours, in teacher's staffroom or as per the arrangement made by the teacher.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Introduction to Plasma Physics and Controlled Fusion; F. F. Chen, 3 rd edition, Springer International Publishing Switzerland 2016.
Essential References Materials	 Fundamentals of Plasma physics; Paul M. Bellan, Cambridge University Press, 2006. Introduction to Plasma Physics; R.J. Goldston, P.H. Rutherford, Institute of Physics Publishing, London, 1997
Electronic Materials	https://link.springer.com/content/pdf/10.1007%2F978-3-319-22309- 4.pdf
Other Learning Materials	Online multimedia and CD associated with the text books (when available).

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Lecture room with max 60 seats Labs
Technology Resources (AV, data show, Smart Board, software, etc.)	data show, Smart Board, software
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	NONE

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Student Feedback on Effectiveness of Teaching	Students	Indirect
Evaluation of Teaching	Pear reviewer Program coordinator Departmental council Faculty council	Indirect
Improvement of Teaching	Program coordinator Relevant committee	Direct
Quality of learning resources	Students Instructor	Indirect

Evaluation Areas/Issues	Evaluators	Evaluation Methods
	Faculty	
Extent of achievement of course learning outcomes,	Program coordinator Instructor	Direct
Course effectiveness and planning for improvement	Program coordinator Instructor	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	October 2, 2022