



# Course Specification (Postgraduate)

| Course Title: | <b>Complex Variables</b> |
|---------------|--------------------------|
|---------------|--------------------------|

**Course Code**: 202653-3

**Program:** Master of Pure Mathematics

**Department:** Mathematics and Statistics

College: Faculty of Sciences

Institution: Taif University

Version: 1

Last Revision Date: 20/10/2023







### **Table of Contents**

| A. General information about the course:                                        | 3 |
|---------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods: | 4 |
| C. Course Content:                                                              | 5 |
| D. Students Assessment Activities:                                              | 6 |
| E. Learning Resources and Facilities:                                           | 6 |
| F. Assessment of Course Quality:                                                | 7 |
| G. Specification Approval Data:                                                 | 7 |





### A. General information about the course:

### **1. Course Identification:**

### 1. Credit hours: ( 3 )h

| 2.         | Course | tν | ne |
|------------|--------|----|----|
| <b>~</b> • | Course | Ly | P  |

| Α.                                                 | □University | □College | □Departm    | ent     | □Track |  |
|----------------------------------------------------|-------------|----------|-------------|---------|--------|--|
| В.                                                 | □Required   |          | $\boxtimes$ | Electiv | ve     |  |
| 3. Level/year at which this course is offered: (3) |             |          |             |         |        |  |
|                                                    |             |          |             |         |        |  |

### 4. Course general Description:

Some topics in complex analysis must be discussed such as:

Entire functions-Harmonic functions- The Riemann mapping theorem- Conformal mappings – compactness and convergence in spaces of analytic and meromorphic functions-

Topics in Univalent functions and geometric function theory-Riemann surfaces- Functions of several complex variables.

**5.** Pre-requirements for this course (if any): None

#### 6. Pre-requirements for this course (if any):None

### 7. Course Main Objective(s):

- 1. Study Entire functions -Harmonic functions.
- 2. Study The Riemann mapping theorem.
- 3. Study properties Conformal mappings.
- 4. Study properties of analytic and meromorphic functions.
- 5. Study some topics in univalent function theory and geometric function theory.
- 6. Study properties of Riemann surfaces.
- Study theory of functions of several complex variables.

#### **2. Teaching Mode:** (mark all that apply)

| No | Mode of Instruction                                    | Contact Hours | Percentage |
|----|--------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                  | $\checkmark$  | 100%       |
| 2  | E-learning                                             |               |            |
| 3  | <ul><li>Hybrid</li><li>Traditional classroom</li></ul> |               |            |





| No | Mode of Instruction | Contact Hours | Percentage |
|----|---------------------|---------------|------------|
|    | • E-learning        |               |            |
| 4  | Distance learning   |               |            |

### 3. Contact Hours: (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures          | 45            |
| 2. | Laboratory/Studio | NA            |
| 3. | Field             | NA            |
| 4. | Tutorial          | NA            |
| 5. | Others (specify)  | NA            |
|    | Total             | 45            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and

### **Assessment Methods:**

| Code | Course Learning<br>Outcomes                                                                    | Code of CLOs aligned<br>with program | Teaching<br>Strategies             | Assessment<br>Methods          |
|------|------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|--------------------------------|
| 1.0  | Knowledge and under                                                                            | standing                             |                                    |                                |
| 1.1  | Recognize<br>fundamentals<br>definitions of analytic,<br>harmonic and<br>meromorphic functions | K1                                   | Lectures, group<br>discussion<br>` | Exams, Quizzes,<br>Assignments |
| 1.2  | Describe<br>generalizations of<br>functions of several<br>complex variables.                   | К3                                   | Lectures, group<br>discussion<br>` | Exams, Quizzes,<br>Assignments |
|      |                                                                                                |                                      |                                    |                                |
| 2.0  | Skills                                                                                         |                                      |                                    |                                |
| 2.1  | Give some<br>applications for<br>analytic and harmonic<br>functions.                           | S1                                   | Lectures, group<br>discussion<br>` | Exams, Quizzes,<br>Assignments |
| 2.2  | <u>Demonstrate</u><br>properties of Riemann<br>surfaces .                                      | S5                                   | Lectures, group<br>discussion      | Exams, Quizzes,<br>Assignments |





| Code | Course Learning<br>Outcomes                                                                                                        | Code of CLOs aligned<br>with program | Teaching<br>Strategies                     | Assessment<br>Methods |
|------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------|-----------------------|
|      |                                                                                                                                    |                                      |                                            |                       |
| 3.0  | Values, autonomy, and                                                                                                              | d responsibility                     |                                            |                       |
| 3.1  | <u>Participate</u> basic<br>properties of<br>Conformal mappings.                                                                   | V1                                   | Collaborative<br>Learning<br>Self-learning | Scientific activity   |
| 3.2  | <b><u>Give</u></b> responsibility for<br>learning some topics in<br>univalent function<br>theory and geometric<br>function theory. | V2                                   | Lectures                                   | Assignments           |
|      |                                                                                                                                    |                                      |                                            |                       |

# **C. Course Content:**

| Α   | List of Topics                                                                           | Contact Hours |
|-----|------------------------------------------------------------------------------------------|---------------|
| 1.  | General and basic properties of entire, analytic with several examples.                  | 3             |
| 2.  | General and basic properties of meromorphic functions with examples.                     | 3             |
| 3.  | Compactness and convergence in the space of analytic functions                           | 3             |
| 4.  | Spaces of meromorphic functions, the Riemann mapping theorem                             | 3             |
| 5.  | Weierstrass Factorization theorem, the gamma function, the Riemann zeta function.        | 3             |
| 6.  | Univalent function theory and geometric function theory.                                 | 3             |
| 7.  | Analytic continuation and Riemann surfaces.                                              | 3             |
| 8.  | Topological spaces and neighborhood systems.                                             | 3             |
| 9.  | Midterm exam.                                                                            | 3             |
| 10. | Analytic manifolds, covering spaces.                                                     | 3             |
| 11. | Harmonic functions, Basic properties of harmonic functions, Harmonic function on a disk. | 3             |
| 12. | Subharmonic and superharmonic functions, the Dirichlet problem, Green functions.         | 3             |
| 13. | Entire function, Jensen's formula, the genus and order of an entire function             | 3             |
| 14. | Hadamard Fractorization theorem.                                                         | 3             |
| 15. | The Range of an analytic function                                                        | 3             |
|     | Total                                                                                    | 45            |





### **D. Students Assessment Activities:**

| No | Assessment Activities * | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|--------------------------------------|-----------------------------------------|
| 1. | Quizzes and HomeWorks   | Continues                            | 10 %                                    |
| 2. | Midterm exam 1          | 8 <sup>th</sup> - 9 <sup>th</sup>    | 20 %                                    |
| 3. | Final exam              | 16 <sup>th</sup>                     | 70%                                     |

\*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

### **E. Learning Resources and Facilities:**

### **1. References and Learning Resources:**

| Essential References     | <ol> <li>Conway, John B. Functions of one complex variable II. Vol.<br/>159. Springer Science &amp; Business Media, 2012.</li> <li>Taylor, Michael E. Introduction to complex analysis, Graduate<br/>Studies in Mathematics 202. Providence, RI: American<br/>Mathematical Society (AMS) (ISBN 978-1-4704-5286-5/hbk;<br/>978-1-4704-5448-7/ebook). xiv, 480 p. (2019)</li> </ol> |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | Krantz, S. G., Function Theory of Several Complex Variables<br>(2001), American Mathematical Society: American Mathematical<br>Society Providence,                                                                                                                                                                                                                                |
| Electronic Materials     | Lectures available in Blackboard                                                                                                                                                                                                                                                                                                                                                  |
| Other Learning Materials | None                                                                                                                                                                                                                                                                                                                                                                              |

## 2. Educational and Research Facilities and Equipment Required:

| Items                                                                | Resources  |
|----------------------------------------------------------------------|------------|
| <b>facilities</b><br>(Classrooms, laboratories, exhibition rooms,    | Classrooms |
| simulation rooms, etc.)                                              |            |
| <b>Technology equipment</b><br>(Projector, smart board, software)    | data show  |
| <b>Other equipment</b><br>(Depending on the nature of the specialty) | None       |





### F. Assessment of Course Quality:

| Assessment Areas/Issues                        | Assessor                 | Assessment Methods |
|------------------------------------------------|--------------------------|--------------------|
| Effectiveness of teaching                      | Students, Program Leader | Direct& Indirect   |
| Effectiveness of students<br>assessment        | Faculty, Program Leader  | Direct             |
| Quality of learning resources                  | Students, Faculty        | Indirect           |
| The extent to which CLOs have<br>been achieved | Faculty                  | Direct& Indirect   |
| Other                                          |                          |                    |

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

### **G. Specification Approval Data:**

| COUNCIL /COMMITTEE | Department of Mathematics and Statistics |
|--------------------|------------------------------------------|
| REFERENCE NO.      |                                          |
| DATE               | October 2023                             |





