

Course Specifications

Course Title:	Mathematical Physics (2)
Course Code:	2033203-3
Program:	Bachelor in Physics
Department:	Physics Department
College:	College of Science
Institution:	Taif University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours:3		
2. Course type		
a. University College Department $$ Others		
b. Required \checkmark Elective		
3. Level/year at which this course is offered: 9 th Level / 3 rd year		
4. Pre-requisites for this course (if any): Mathematical physics (1) (2033102-3)		
5. Co-requisites for this course (if any): None		
▲ · · · · · · · · · · · · · · · · · · ·		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	4	100%
2	Blended	0	0%
3	E-learning	0	0%
4	Distance learning	0	0%
5	Other	0	0%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	40
2	Laboratory/Studio	0
3	Tutorial	0
4	Others (specify)	0
	Total	40

B. Course Objectives and Learning Outcomes

1. Course Description

Fourier series - Periodic functions – Fourier series and Fourier coefficients - Dirichlet conditions and Parseval's Theorem - Partial differential equations : separation of variables method – Solution of Laplace equation in different coordinate systems - The diffusion equation in Cartesi coordinates – The wave equation in Cartesian and polar coordinates - Functions of complex variables – Analytical functions – Cauchy - Riemann conditions - Cauchy theorem – Cauchy inte formula- The residue theorem – methods of finding the residue - Evaluation of definite integral by using residue theorem- Solution of differential equation by using Laplace and Fourier transforms– Convolution.

2. Course Main Objective

Use Fourier series to expand periodic functions. Analyze partial differential equations using separation of variable. Utilize Cauchy integral theorem in analyzing physical problems. Evaluation of definite integrals by using residue theorem. Find solution of differential equation by using Laplace and Fourier Transform.

3. Course Learning Outcomes

	CLOs	Aligned PLOs	
1	Knowledge and Understanding		
1.1	• State the basic concepts of Fourier series, Dirichlet condition, Parseval's Theorem, Partial differential equation and its physical Signifance	K1	
1.2	• Define variable separation method and superposition theory and write Cauchy integral theorem	K2	
2	Skills :		
2.1	• Expand the Periodic function by using Fourier series, deduce the value of an infinite sum of a numerical series and evaluate of definite integrals of analytical function by using residue theorem.	S1	
2.2	• Solve differential equations by using separation of variables, Laplace and Fourier Transform	S2	
3	Values:		
3.1	• Show responsibility for working independently and interacting with staff to extract important information and identifying key issues to make progress	V1	
3.2	• Use mathematical, numerical, statistical tools, information and communications technology and effective searching for needed information		

C. Course Content

No	List of Topics	Contact Hours
1	 Section 1: Fourier series Periodic functions Applications of Fourier series Fourier coefficients Complex form of Fourier series Fourier series for odd and even functions Dirichlet conditions and Parseval's Theorem 	8
2	Section 2: Partial differential equation• Laplace's equations• The diffusion or heat flow equation• The wave equation - the vibrating String• Steady state temperature in a cylinder and sphere• Vibration of a circular membrane• Poisson's equation	
3	 Section 3: Functions of a complex variable Analytic functions Contour integrals The residue theorem Methods of finding residue Evaluation of definite integrals by using residue theorem 	10

4	 Section 4: Integral transforms Laplace transform and its inversion Solution of differential equation by using Laplace transform Fourier transforms and its inversion Solution of differential equation by using Fourier transform Convolution, Parseval's theorem 	10
	Total	40

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
 State the basic concepts of Fourier series, Dirichlet condition, Parseval's 1.1 Theorem, Partial differential equation and its physical significance 		•Written exam	
1.2	•Define separation of variables method and superposition theory and write Cauchy integral theorem	• Enhanced with lecture	•Written exam
2.0	Skills	-	
2.1	•Expand the Periodic function by using Fourier series and deduce the value of an infinite sum of a numerical series, from the application of the Parseval's theorem and the Dirichlet conditions	• Class Lecture	 Periodical and final exams
2.2	•Solve second order partial differential equations by using separation of variables and superposition theory	LectureProblem-Solving	•Home work
3.0	Values		
3.1	• Show responsibility for working independently and interacting with staff to extract important information and identifying key issues to make progress	•Group discussion	•Homework reports
3.2	• Interacting, working in groups and having a willingness to take initiative.	• Groups discussion	•Homework reports Research activities

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Activities	Periodically	10%
2	Midterm exam	6 th	30%
3	Short exam	9 th	10%
4	Final exam	12 th	50%

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

6 Hours per week during office-hours, in the instructor's office or by appointment.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	 Mathematical methods in the physical sciences, M.L.Boas, John Wiley &sons, 2nd edition, 1983 	
Essential References Materials• Mathematics for Physics, Michael Stone and Paul Goldbart • Mathematical Tools for Physics, by James Nearing Physics Department University of Miami		
Electronic Materials	 http:// hyperphysics ,phy-astr.gsu.edu / hbase / hframe.htm Wikipedia.org / Wiki / physics subjects http://www.physics.miami.edu/nearing/mathmethods/mathematicalmethods-three.pdf 	
Other Learning Materials	• Mathematica, Mathlab	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Lecture room with max 60 seats Labs
Technology Resources (AV, data show, Smart Board, software, etc.)	data show, Smart Board, software
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Student Feedback on Effectiveness of Teaching	Students	Indirect
Evaluation of Teaching	Pear reviewer Program coordinator Departmental council Faculty council	Indirect
Improvement of Teaching	Program coordinator Relevant committee	Direct

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Quality of learning resources	Students Instructor Faculty	Indirect
Extent of achievement of course learning outcomes,	Program coordinator Instructor	Direct
Course effectiveness and planning for improvement	Program coordinator Instructor	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality oflearning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods(Direct, Indirect)

H. Specification Approval Data

Council / Committee	Department Council
Reference No.	
Date	October 2, 2022