

Course Specifications

Course Title:	Electronics
Course Code:	503413-4
Program:	Bachelor in Computer Engineering
Department:	Department of Computer Engineering
College:	College of Computers and Information Technology
Institution:	Taif University

Table of Contents

A. Course Identification 3	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes 3	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content 4	l I
D. Teaching and Assessment 4	l I
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation 7	7
H. Specification Approval Data 7	7

He.

A. Course Identification

1. Credit hours: 4	
2. Course type	
a. University College Department	Others
b. Required Elective	
3. Level/year at which this course is offered: 7/4	
4. Pre-requisites for this course (if any): 503310-4	
5. Co-requisites for this course (if any): None	

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	5	100%
2	Blended	0	0
3	E-learning	0	0
4	Distance learning	0	0
5	Other	0	0

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	30
3	Tutorial	
4	Others (specify)	
	Total	75

B. Course Objectives and Learning Outcomes

1. Course Description

This course focuses on analysis and design used throughout the electronic devices and circuit theory. Semiconductor diodes. Diode applications. BJT transistor modeling. BJT Small signal. Theory of operational amplifiers, Inverting and noninverting operational amplifier, feedback theory, frequency response, Applications of operational amplifier, voltage summation, subtraction and comparator, integration, and differentiation circuits, comparators, Oscillators Active filters and Multistage amplifier.

2. Course Main Objective

- 1. Identify Semiconductor diodes and their applications.
- 2. Analysis and modeling Bipolar junction transistors.
- 3. Analysis of BJT small signals.
- 4. Analyze and design of inverting, noninverting op Amp, summing, subtraction amplifier circuits, and comparators.
- 5. Analyze and design of comparators, differentiators, Integrators, and oscillators.
- 6. Analyze and design of active filters (L.P.F., H.P.F., B.P.F.)
- 7. Analysis of multistage amplifiers.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Identify Semiconductor diodes and their applications	K1
1.2	Formulate the principles of inverting noninverting op-amp summing subtraction amplifier circuits, Integrators and differentiators comparator sand oscillators.	K1
1.3	Identify the principles of design of active filters L.P.F.H.P.F. B.P.F.	K1
2	Skills :	
2.1	Apply engineering design to produce solutions that meet specified needs with consideration of analysis and modeling Bipolar junction transistors.	S1
2.2	Apply engineering design to produce solutions that meet specified needs with consideration of analysis of BJT small signal	S 1
2.3	Analyze Integrators and differentiators comparators and oscillators and multistage amplifiers.	S3
3	Values:	

C. Course Content

No	List of Topics	Contact Hours
1	Semiconductor diodes ideal and practical diodes, diode equivalent circuits, load line analysis.	5
2	Diode applications series diode, parallel and series parallel configurations, Sinusoidal inputs Halfwave and full wave rectification. Chap 1	
3	Diode applications clippers and clampers, and zener diode.	5
4	BJT Transistor modeling.	
5	Small signal BJT transistor.	5
6	operationl Amplifier Theory and Inverting and Noninverting operation amplifier	4
7	Feedback theory, and Frequency response Voltage summation	3
8	Subtraction circuits, Integration operational amplifier.	3
9	Differentiation circuits, Comparator circuits	3
10	Oscillator circuits	3
11	Active filters High pass filter and Band pass filter	2
12	Multistage amplifier	2
	Lab	30
	Total	75

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		

1.1	Identify Semiconductor diodes and their applications	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments
1.2	Formulate the principles of inverting noninverting op-amp summing subtraction amplifier circuits, Integrators and differentiators comparator sand oscillators.	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments
	Identify the principles of design of active filters L.P.F.H.P.F. B.P.F.	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments
2.0	Skills		
2.1	Apply engineering design to produce solutions that meet specified needs with consideration of analysis and modeling Bipolar junction transistors.	Lecture Discussion Projects	Written Exams Quizzes Assignments Oral Test Project Practical Test
2.2	Apply engineering design to produce solutions that meet specified needs with consideration of analysis of BJT small signal	Lecture Discussion Projects	Written Exams Quizzes Assignments Oral Test Project Practical Test
2.3	Analyze Integrators and differentiators comparators and oscillators and multistage amplifiers.	Lecture Discussion Projects	Written Exams Quizzes Assignments Oral Test Project Practical Test
3.0	values		
3.1			
3.2			

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Lab Exam	15	15%
2	Midterm Exam	7	20%
3	Assignments	Continues	5%
4	Quizzes	Continues	10%
5	Project	Continues	10%
6	Final Exam	16	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

Teaching staff provide at least 6 office hours for students to help them in the course as well as in any other academic issues.

- Consultation can also be done 24 hours/ 7days through university Edugate (Tawasol)
- Consultation can also be done through email which is available at blackboard system.
- academic advice can be done through blackboard system facilities.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Robert L. Boylestad and Louis Nashelsky, Electronic Devices and Circuit Theory, Pearson, 10th Ed, 2000.
Essential References Materials	Theodore F. Bogart, Jr., Electronic Devices and Circuits, Prentice Hall, 4th Ed, 1990.
Electronic Materials	
Other Learning Materials	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Traditional Classrooms, Laboratories
Technology Resources (AV, data show, Smart Board, software, etc.)	White Board. Data show, software
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Extent of achievement of course learning outcomes	Students	Indirect (Survey)
Effectiveness of teaching and assessment	Students	Indirect (Survey)

Extent of achievement of course learning outcomes	Faculty	Course Report

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.) **Evaluators** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	

