



# Course Specification (Postgraduate)

**Course Title:** Theory of Differential Equations

**Course Code: 202504-3** 

**Program: Master of Pure Mathematics** 

**Department:** Mathematics and Statistics

**College:** Science

Institution: Taif university

Version: 1

Last Revision Date: 20/10/2023







## **Table of Contents**

| A. General information about the course:                                        | 3 |
|---------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods: |   |
| C. Course Content:                                                              | 5 |
| D. Students Assessment Activities:                                              | 5 |
| E. Learning Resources and Facilities:                                           | 5 |
| F. Assessment of Course Quality:                                                | 6 |
| G. Specification Approval Data:                                                 | 6 |





## A. General information about the course:

### **1. Course Identification:**

### 1. Credit hours: (3)

| 2. Course type                                                     |             |          |         |          |        |
|--------------------------------------------------------------------|-------------|----------|---------|----------|--------|
| Α.                                                                 | □University | □College | □Depart | tment    | □Track |
| Β.                                                                 | □Required   |          |         | 🛛 Electi | ive    |
| 2. Lovel / we at which this serves is offered. Lovel 4 / First Ves |             |          |         |          |        |

3. Level/year at which this course is offered: Level 1/First Year

4. Course general Description:

In this course, we will study Dynamical Systems – Existence and uniqueness of solutions of linear systems – eigenvalues and eigenvectors – Rayleigh-Ritz method - perturbation method.

### 5. Pre-requirements for this course (if any):

#### None

6. Pre-requirements for this course (if any):

None

### 7. Course Main Objective(s):

The student will be taught as follows:

- 1. Studying Dynamical Systems
- 2. Studying Existence and uniqueness of solutions of linear systems
- 3. Studying eigenvalues and eigenvectors.
- 4. Studying Rayleigh.
- 5. Studying Ritz method
- 6. Studying perturbation method.

#### 2. Teaching Mode: (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                                     | $\checkmark$  | 100%       |
| 2  | E-learning                                                                |               |            |
| 3  | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4  | Distance learning                                                         |               |            |





## 3. Contact Hours: (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures          | 45            |
| 2. | Laboratory/Studio | NA            |
| 3. | Field             | NA            |
| 4. | Tutorial          | NA            |
| 5. | Others (specify)  | NA            |
|    | Total             | 45            |

## B. Course Learning Outcomes (CLOs), Teaching Strategies and

## **Assessment Methods:**

| Code | Course Learning<br>Outcomes                                                                                          | Code of CLOs aligned<br>with program | Teaching<br>Strategies        | Assessment<br>Methods                     |
|------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|-------------------------------------------|
| 1.0  | Knowledge and unders                                                                                                 | standing                             |                               |                                           |
| 1.1  | <b><u>Recognize</u></b> Existence<br>and uniqueness of<br>solutions of linear<br>systems.                            | K1                                   | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments            |
| 1.2  | <u>Describe</u> perturbation method.                                                                                 | К3                                   | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments            |
| 2.0  |                                                                                                                      | Skills                               |                               |                                           |
| 2.1  | Applyperturbationmethod - Existence anduniqueness of solutionsof linear systems.                                     | S1                                   | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments,<br>report |
| 2.2  | DemonstrateRitzmethod.eigenvaluesand eigenvectors.                                                                   | S5                                   | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments,<br>report |
| 3.0  |                                                                                                                      | Values, autonomy, and                | responsibility                |                                           |
| 3.1  | Participate effectively within groups and independently.                                                             | <b>V</b> 1                           | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments,<br>report |
| 3.2  | <b>Give</b> responsibility for<br>learning importance<br>and continuing personal<br>and professional<br>development. | V2                                   | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments,<br>report |





## **C. Course Content:**

| No | List of Topics                                          | Contact Hours |
|----|---------------------------------------------------------|---------------|
| 1. | Dynamical Systems.                                      | 9             |
| 2. | Existence and uniqueness of solutions of linear systems | 9             |
| 3. | Eigenvalues and eigenvectors.                           | 9             |
| 4. | Rayleigh.                                               | 6             |
| 5. | Ritz method.                                            | 6             |
| 6. | Perturbation method.                                    | 6             |
|    | Total                                                   | 45            |

## **D. Students Assessment Activities:**

| No | Assessment Activities * | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|--------------------------------------|-----------------------------------------|
| 1. | Quizzes and HomeWorks   | Continues                            | 10 %                                    |
| 2. | Midterm exam            | 8 <sup>th</sup> -9 <sup>th</sup>     | 20 %                                    |
| 3. | Final exam              | 16 <sup>th</sup>                     | 70%                                     |

\*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

## **E. Learning Resources and Facilities:**

## **1. References and Learning Resources:**

| Essential References     | Partial Differential Equations: Second Edition<br>ISBN-13: 978-0821849743<br>ISBN-10: 0821849743  |
|--------------------------|---------------------------------------------------------------------------------------------------|
| Supportive References    | Introduction to Partial Differential Equations.<br>ISBN-13: 978-0691043616<br>ISBN-10: 0691043612 |
| Electronic Materials     | https://www.amazon.com/Partial-Differential-Equations-<br>Graduate-Mathematics/dp/0821849743      |
| Other Learning Materials | None                                                                                              |

## 2. Educational and Research Facilities and Equipment Required:

| Items                                                                                        | Resources  |
|----------------------------------------------------------------------------------------------|------------|
| <b>facilities</b><br>(Classrooms, laboratories, exhibition rooms,<br>simulation rooms, etc.) | Classrooms |





| Items                                                                | Resources                                        |
|----------------------------------------------------------------------|--------------------------------------------------|
| <b>Technology equipment</b><br>(Projector, smart board, software)    | Data show, Blackboard, Maple and MATLAB software |
| <b>Other equipment</b><br>(Depending on the nature of the specialty) | Wi-Fi internet connections                       |

## F. Assessment of Course Quality:

| Assessment Areas/Issues                        | Assessor                        | Assessment Methods |
|------------------------------------------------|---------------------------------|--------------------|
| Effectiveness of teaching                      | Students                        | Indirect           |
| Effectiveness of students<br>assessment        | Students                        | Indirect           |
| Quality of learning resources                  | Students                        | Indirect           |
| The extent to which CLOs have<br>been achieved | Peer reviewer                   | Direct             |
| Other                                          |                                 |                    |
| Assessor (Students Faculty Program Leaders     | Poor Poviowar, Others (specify) |                    |

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

## **G. Specification Approval Data:**

| COUNCIL /COMMITTEE | Department of Mathematics and Statistics |  |
|--------------------|------------------------------------------|--|
| REFERENCE NO.      |                                          |  |
| DATE               | 20/10/2023                               |  |



