

Course Specifications

Course Title:	Solid State Physics (2)
Course Code:	2034102-2
Program:	Bachelor in Physics
Department:	Physics Department
College:	College of Science
Institution:	Taif University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 2		
2. Course type		
a.UniversityCollegeDepartmentxOthers		
b. Required x Elective		
3. Level/year at which this course is offered: 11^{th} level /4 th year		
4. Pre-requisites for this course (if any): Solid State Physics (1) 2033201-4 and Statistical Physics 2033204-3		
5. Co-requisites for this course (if any):NONE		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3	100%
2	Blended	0	0%
3	E-learning	0	0%
4	Distance learning	0	0%
5	Other	0	0%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	0
3	Tutorial	0
4	Others (specify)	0
	Total	30

B. Course Objectives and Learning Outcomes

1. Course Description

Energy band theory, the nearly free electron model and effective mass concept, classification of materials according to energy band gap, conduction in intrinsic and extrinsic semiconductors, magnetic materials (paramagnetic, diamagnetic and ferromagnetic materials), theory of superconductivity, Meissner effect and Josephson effect

2. Course Main Objective

This course covers topics related to solid state physics, including energy band structure, classification of materials according to energy band gaps, conduction in semiconductors, magnetic materials, superconductivity and some materials applications.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	Classify materials on the basis of their band structures and materials	K3
	applications on the basis of their conductivity or resistivity.	
1.2	Outline the magnetic properties and magnetic categories of materials	K4
	and describe the superconductivity theory in solids	
2	Skills :	
2.1	Develop simple models to determine the energy band structure and	S3
	magnetic properties of materials and to classify them accordingly.	
2.2	Develop skill versatility in solving problems related to electrical and	S2
	magnetic properties of solids.	
3	Values:	
3.1	Show responsibility for working independently and for continuous	V1
	improvement of personal capacities.	
3.2	Use internet and computer skills to develop knowledge in solid state	
	physics.	

C. Course Content

NO	List of Topics	Contact Hours
	Band theory:Energy spectra in atoms, molecules and solids	
	 Bloch theorem 	
	 Brillouin zones 	
	 Number of states in the band 	
1	 Nearly free electron model 	8
	2- Classification of the materials according to the energy	
	band structure:	
	 Dielectrics 	
	 Semiconductors 	
	 Conductors. 	
	 Transport properties in Conductors and Semiconductors (Hall 	
2	effect and Quantum Hall effect)	6
	 Optical properties in solids 	
3	Mid-term exam1	2
	3- Magnetism and magnetic resonance:	
	 Magnetic susceptibility 	
4	 Paramagnetism 	6
	 Ferromagnetism in metals and insulators 	_
	 Paramagnetic resonance 	
	 Nuclear magnetic resonance. 	
5	Mid-term exam2	2
-		
	4- Superconductivity:	
6	 Zero resistance 	4
U	 perfect diamagnetism and Meissner effect 	4
	 the critical field 	

	theory of superconductivityJosephson effect	
	 Applications of superconducting materials. 	
7	Revision	2
	Total	

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Classify materials on the basis of band structure, and materials applications on the basis of conductivity or resistivity.	Lecture	Written exams Homework
1.2	Outline materials magnetic properties and magnetic categories and describe the superconductivity theory in solids.	Lecture	Written exams Homework
2.0	Skills		
2.1	Develop simple models to determine the energy band structure and magnetic properties of materials and to classify them accordingly.	Problem solving Group discussion	Written exams Homework reports
2.2	Develop skill versatility in solving problems related to electrical and Written exams		Written exams Homework reports
3.0	Values		
3.1	Show responsibility for working independently and for continuous improvement of personal capacities.	Group discussion	Homework reports Essays
3.2	Use internet and computer skills to develop knowledge in solid state physics.	Group discussion	Homework reports Essays

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Activities	Periodically	10%
2	Midterm exam	6 th	30%
3	Short exam	9^{th}	10%
4	Final exam	12 th	50%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Six office hours per week reserved to students for faculty consultation and academic advice.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks1- Elementary Solid state Physics, M A Omar, Addison – Wesley publishing company, USA (1993).Introduction to Solid State Physics, Charles Kittle, John V Sons, Inc., New York, 1996.	
Essential References Materials	 ✓ Solid State Sciences ✓ Materials Science and Engineering ✓ Materials Letters - Journal – Elsevier
Electronic Materials	 <u>http://www.crystallography.net/cod/result.php</u> <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html</u>
Other Learning Materials	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classrooms
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Lecture notes and PowerPoints presentations prepared by the lecturer

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Student Feedback on effectiveness of Teaching	Students	Indirect
Evaluation of Teaching	Instructor Program coordinator Departmental council Faculty council	Indirect
Improvement of Teaching	Program leaders Relevant committee	Direct
Quality of learning resources	Students Instructor Faculty	Indirect
Extent of achievement of course learning outcomes	Program leaders Instructor	Direct
Course effectiveness and planning for improvement	Program leaders Instructor	Indirect

6

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)
Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Department Council / Committee of academic development
Reference No.	
Date	October 2, 2022