

Course Specifications

Course Title:	Digital Image Processing
Course Code:	503576-3
Program:	Bachelor in Computer Engineering
Department:	Department of Computer Engineering
College:	College of Computers and Information Technology
Institution:	Taif University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	4
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	5
H. Specification Approval Data	6

il.

A. Course Identification

1. Credit hours:3			
2. Course type			
a. University Co	llege Department	Others	
b. Required	Elective		
3. Level/year at which the	is course is offered: 9/5		
4. Pre-requisites for this course (if any): Digital Signal Processing (503474-3)			
5. Co-requisites for this course (if any):			
Non			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	45

B. Course Objectives and Learning Outcomes

1. Course Description

This course offers an introduction to the theory of multidimensional signal processing and digital image processing. Topics include; human visual system, image acquisition and display, image sampling and quantization, color representations, image filtering, image transforms; FFT and DCT, image enhancement, morphological image processing, image restoration, image denoising, image segmentation, and image compression.

2. Course Main Objective

- 1. Understand the fundamental concepts of 2D signals and systems.
- 2. Present and describe common image processing operations in spatial domain.
- 3. Present and describe common image processing operations using different transform domains.
- 4. Explain the image compression and decompression.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Recognize the fundamental concepts of a digital image processing system	K1
1.2	Perform digital image processing operations in spatial domain including point operations, histogram processing, image filtering, edge detection, image segmentation and restoration, and morphological operations.	K1
2	Skills :	
2.1	Perform digital image processing operations in transform domain using Fourier transform.	S1
2.2	Perform image processing operations on color images.	S2
2.3	Recognize and perform image compression algorithms.	S2
3	Values: NON	

C. Course Content

No	List of Topics	Contact Hours
1	The digital image processing field: Introduction, definitions, and applications, Image fundamentals: Models, sampling, quantization, and basic operations	3
2	Image Enhancement: Point processing, intensity transformations, contract stretching.	3
3	Histogram processing: histogram equalization and specification.	4
4	Spatial domain filtering: 2-D convolution, Smoothing filters, Median filter	5
5	Spatial domain filtering: Gradient and Laplacian, edge detection, sharpening filters	5
6	Image segmentation: Global and adaptive thresholding, Morphological image processing	5
7	1D and 2D Discrete Fourier Transform, DFT, Properties of DFT	5
8	Frequency domain processing: Low & high pass Filtering. Image restoration, noise models	5
9	Color and Multichannel image processing: Color fundamentals, models, transformation, and enhancement	5
10	Image compression fundamentals	5
	Total	45

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
	Recognize the fundamental concepts	Lecture	Written Exams
1.1	of a digital image processing system.	Discussion	Quizzes
		Problem Solving	Assignments

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.2	Perform digital image processing operations in spatial domain including point operations, histogram processing, image filtering, edge detection, image segmentation and restoration, and morphological operations.	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments
2.0	Skills		
2.1	Perform digital image processing operations in transform domain using Fourier transform.	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments
2.2	Perform image processing operations on color images.	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments
2.3	Recognize and perform image compression algorithms.	Lecture Discussion Problem Solving	Written Exams Quizzes Assignments
3.0	Values: NON		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Assignments	Continues	5%
2	Midterm Exam	7	20%
3	Project	8	15%
4	Quizzes	Continues	10%
5	Final Exam	16	50%
6			

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

Teaching staff provide at least 6 office hours for students to help them in the course as well as in any other academic issues.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	R. Gonzalez and R. Woods, Digital Image Processing, third edition, Prentice Hall, 2008.
Essential References Materials	C. Solomon and T. Breckon, Fundamentals of Digital Image processing: A Practical Approach with Examples in MATLAB, third edition, John Wiley & sons inc and Lab Manual, 2011.

Electronic Materials	
Other Learning Materials	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Traditional Classrooms, Laboratories
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment	Students	Indirect (Survey)
Extent of achievement of course learning outcomes	Students	Indirect (Survey)
Extent of achievement of course learning outcomes	Faculty	Course Report

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Computer Engineering Council / Curriculum Committee
Reference No.	
Date	

قسم هندسة الحاسب

Computer Engineering Department

