

Course Specification — (Bachelor)

Course Title: Analysis and Design of Algorithms

Course Code: 501435-3

Program: Bachelor of Computer Science

Department: Department of Computer Science

College: College of Computers and Information Technology

Institution: Taif University

Version: 1

Last Revision Date: 19-01-2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Credit hours: (3)

2. Course type

							1
Α.	□University	□College	⊠ Departme	nt	□Track	□Others	
Β.	\boxtimes Required		□E	lectiv	ve		
3. L	3. Level/year at which this course is offered: (7th Level/4)						

4. Course general Description:

Algorithm is the central concept of Computer Science. This course provides introduction to algorithm design and analysis. Students study techniques for designing algorithms and for analyzing the time and space efficiency of algorithms. The algorithm design techniques include divide-and-conquer, greedy technique, dynamic programming, backtracking and branch and bound. The algorithm analysis includes computational models, computational complexity, and computation of best, average and worst case complexity. The course also includes study of limits of algorithmic methods (e.g. NP-hard, NP-complete problems).

5. Pre-requirements for this course (if any):

501324-3

6. Co-requirements for this course (if any):

.....

7. Course Main Objective(s):

Students at the end of this course are able to:

- Understand different algorithm design techniques
- Design an efficient algorithm for a given task using the most suitable design technique
- Understand major classical algorithms available for different tasks
- Analyze the algorithms for different problems.
- Ability to differentiate between problems that can be solved by polynomial time algorithm and problems for which no polynomial time algorithm is known.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3	100%
2	E-learning		
3	Hybrid Traditional classroom E-learning	0	0
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	-
3.	Field	-
4.	Tutorial	-
5.	Others (specify)	-
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Know	ledge and und	erstanding	
1.1	Understand principles of algorithm design	К1	Lectures Tutorials	Direct Assessment Tool Quizzes / Homework/Project/ Exams Indirect Assessment Tool Course Exit Survey
1.2				
1.3				
2.0		Skills		
2.1	Apply mathematical preliminaries to design and analyze stages of different types of algorithms	S1	Lectures Tutorials	Direct Assessment Tool Quizzes / Homework/Project/ Exams Indirect Assessment Tool Course Exit Survey
2.2	Analyze the performance of different algorithms	S1	Lectures Tutorials	Direct Assessment Tool Quizzes / Homework/Project/ Exams Indirect Assessment Tool Course Exit Survey

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.3	Design an efficient algorithm for a particular task	S2	Lectures Tutorials Project	Direct Assessment Tool Quizzes / Homework/Project/ Exams Indirect Assessment Tool Course Exit Survey
2.4	Compare problems that can be solved by polynomial time algorithm and problems for which no polynomial time algorithm is known	S2	Lectures Tutorials	Direct Assessment Tool Quizzes / Homework/Project/ Exams Indirect Assessment Tool Course Exit Survey
3.0	Values, a	utonomy, and	responsibility	
3.1				
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	Algorithm-Introduction, Computational Model, Pseudocode	3
2.	Algortihmic Analysis, Growth Rate, Asymptotic Notation	3
3.	Recurrence Equations, Solving recurrence equations	3
4.	Time and space complexities, Average, best and worst case analysis	6
5.	Divide and Conquer Technique	6
6.	Greedy Technique, Dynamic Programming	12
7.	Backtracking Technique, Branch and Bound Technique	6
8.	NP-Complete Problems: Basic Concepts and Problems	6
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Project	Week 12	10%
2.	Quizzes	Week 3, 5 & 9	20%
3.	Mid-Term	Week 7	30%
4.	Final Examination	Week 16	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer Algorithms, 2008 ISBN-10: 9788173716126 ISBN-13: 978-8173716126		
Supportive References	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms, MIT Press, 1989. ISBN: 0262533057, 9780262533058		
Electronic Materials	 http://openclassroom.stanford.edu/MainFolder/CourseP age.php?course=IntroToAlgorithms https://www.tru.ca/distance/courses/comp3051.html https://www.tutorialspoint.com/design_and_analysis_of _algorithms/ 		
Other Learning Materials			

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Classroom with 25 chairs Lab with 15 PCs and required software tools
Technology equipment (projector, smart board, software)	Video projector / data showWhite board
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	 Students Faculty members Coordinator Council Curriculum Committees 	 Course exit survey Feedback from Faculty members Feedback from Course Coordinator Feedback from council Feedback from Curriculum Committees
Effectiveness of Students assessment	StudentsFaculty membersCoordinator	Course exit surveyFeedback from Faculty members

Assessment Areas/Issues	Assessor	Assessment Methods
	CouncilCurriculum Committees	 Feedback from Course Coordinator Feedback from council Feedback from Curriculum Committees
Quality of learning resources	 Students Faculty members Coordinator Council Curriculum Committees 	 Course exit survey Feedback from Faculty members Feedback from Course Coordinator Feedback from council Feedback from Curriculum Committees
The extent to which CLOs have been achieved	 Students Faculty members Coordinator Council Curriculum Committees 	 Course exit survey Feedback from Faculty members Feedback from Course Coordinator Feedback from council Feedback from Curriculum Committees

Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	CS council
REFERENCE NO.	Meeting #11
DATE	07/03/2024

