

Course Specifications

Course Title:	Laser Physics and its Applications
Course Code:	2034203-4
Program:	Bachelor in Physics
Department:	Physics Department
College:	College of Science
Institution:	Taif University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 4
2. Course type
a. University College Department $$ Others
b. Required $$ Elective
3. Level/year at which this course is offered: 12 th Level / 4 th Year
4. Pre-requisites for this course (if any): Modern physics 2033105-4
5. Co-requisites for this course (if any): Physical Optics 2033104-4

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	7	100%
2	Blended	0	0%
3	E-learning	0	0%
4	Distance learning	0	0%
5	Other	0	0%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	50
2	Laboratory/Studio	20
3	Tutorial	0
4	Others (specify)	0
	Total	70

B. Course Objectives and Learning Outcomes

1. Course Description

The chief purpose is for students to obtain a solid understanding of the basic principles of lasers and to be familiar with the operation of most common laser types. It reviews the basic physics of optical cavities and the spontaneous/stimulated emission from materials leading to laser amplifiers and oscillators. Properties of laser cavities the optics of Gaussian beam and laser applications are discussed.

2. Course Main Objective

The aim of the course is that the student at the end of the course shall:

- have acquired a thorough understanding of the theory of modern laser physics,
- be able to describe in detail the inherent behavior and functionality of the many different types of modern lasers,
- have acquired a deep understanding of the detailed properties of coherent laser light,
- be able to formulate reasonably complicated problems in laser physics and provide solutions to the same
- understand in depth the optical resonance.
- be able to differentiate between types of lasers.
- develop knowledge of applications of laser.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	Describe laser operation and gain saturation.	K3
1.2	Recognize the physics governing laser behaviour and light matter	K3
	interaction experimentally.	
1.3 Summarize information in different types of laser technology.		K3
2	Skills :	
2.1	Apply the principles of atomic physics to materials used in lasers and	S 1
	optics.	
2.2	Develop problem solving skills in laser physics	S2
3	Values:	
3.1	Show responsibility for working independently and for continuous	V1
	improvement of personal capacities.	
3.2	Be able to prepare a written scientific report.	V3

C. Course Content

No	List of Topics	
1	Chapter 1: Introduction and general concept: Nature of light	
	Electromagnetic theory	6
	 Quantum theory Modern entries 	
	- Modelli optics Chapter 2: Characteristics of Lasers:	
	 The meaning of Laser 	
2	 Laser history 	6
	 Light-matter interaction: absorption, spontaneous & stimulated emissions 	
	Optical properties of lasers Chenter 2: Energy Levels, Redictive and Nonredictive Transitions	
	• Atomic models: Thomson's Putherford's and modern atomic models	
	 Particles statistics 	
	 Radiative and non-radiative transitions 	
3	 Einstein's equations 	5
	 Saturation 	
	 Molecular energy levels 	
	 Energy levels in solids 	
	Chapter 4: Laser components:	
	 Basic elements of a laser device: 	
	 Active medium 	
4	 Pumping: optical, electrical, chemical and nuclear 	5
	 Resonators: stability of Resonators 	5
	Laser cavity modes	
	 Oscillators and amplifiers Deconstant quality factor. 	
	Resonator quality factor Chenter 5. Lager systems and loging mechanism.	
	Three and four level laser systems	
	 Population inversion in Laser and Lasing threshold 	
5	 Laser gain 	6
	 Laser output power optimization 	
	 Laser efficiency 	

	 Effective medium 	
	Chapter 6: Time dependent laser behaviours	
6	 Q-switching 	
	 Mode-locking 	
	 Gain switching 	6
	 Linewidth broadening mechanism 	
	 Spectral hole burning 	
	 Spiking 	
	Chapter 7: Lasers types:	
	 Gas lasers: atomic, ionic and molecular lasers 	
7	 Liquid lasers 	6
	 Solid-state lasers 	0
	 Semiconductor Laser 	
	 Other lasers: X-ray lasers and free electron lasers 	
	Chapter 8: Laser applications:	
	 Scientific applications 	
8	 Military applications 	6
0	 Laser in Industry 	0
	 Medical applications 	
	 Other applications 	
	Chapter 9: Laser hazards and safety	
9	 Laser classes 	4
	 Safety requirements and procedures 	
	Total	50

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Describe laser operation and gain saturation.	Group discussion	Quizzes
1.2	Define the physics governing laser Lecture and behaviour and light matter interaction. Group discussion		Written exam
1.3	Summarize information in different types of laser technology.	Lecture Discussion	Written exam
2.0	Skills		
2.1	Apply the principles of atomic physics to materials used in lasers and optics.	Lectures	Written exam and Homework reports
2.2	Develop problem solving skills in laser physics	Lecture and Group discussion	Homework reports
3.0	Values		
3.1	Show responsibility for working independently and for continuous improvement of personal capacities.	Group discussion	Project
3.2	Be able to prepare a written scientific report.	Lab work Groups discussion	Homework reports and lab reports

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Midterm exam	6th	20%
2	Activities	periodically	10%
3	Weekly practical reports	continuous	20%
4	Final practical exam	10th	10%
5	Final exam	11th	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- Each faculty member is assigned a group of students for continuous academic advice during six weekly office hours (6 hrs./week).

Also teaching staff are available for individual student consultations during this period.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	 Principles of lasers, Orazio. Svelto, Published 1998, springer Laser fundamentals, William T. Silfvast, Published 1996, Cambridge Press 	
Essential References Materials	 Introduction to lasers and their application, Donald.C. Oshea Jersey 07458, 1995 Lasers theory and practice, J. Hawkes and I. Latimer, New York : Prentice Hall (1995). 	
Electronic Materials	http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html	
Other Learning Materials	Multi media / CD associated with the text.	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Lecture room with max 50 seats. Laboratories with max 15 places.
Technology Resources (AV, data show, Smart Board, software, etc.)	 Computer room containing at least 10 stations Software (MATLAB, Mathematica, Origin) data show, Smart Board, software
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	-Not applicable for this course

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Student Feedback on Effectiveness of Teaching	Students	Indirect
Evaluation of Teaching	Pear reviewer Program coordinator Departmental council Faculty council	Indirect
Improvement of Teaching	Program coordinator Relevant committee	Direct
Quality of learning resources	Students Instructor Faculty	Indirect
Extent of achievement of course learning outcomes,	Program coordinator Instructor	Direct
Course effectiveness and planning for improvement	Program coordinator Instructor	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Prof. Najm Al-Hosiny Dr. Sami Saeed Alharthi
Reference No.	
Date	October 2, 2022